Condition numbers of gaussian random matrices

被引:34
作者
Chen, ZZ [1 ]
Dongarra, JJ [1 ]
机构
[1] Univ Tennessee, Dept Comp Sci, Knoxville, TN 37996 USA
关键词
condition number; eigenvalues; random matrices; singular values; Wishart distribution;
D O I
10.1137/040616413
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G(m x) (n) be an m x n real random matrix whose elements are independent and identically distributed standard normal random variables, and let kappa(2)(G(m x n)) be the 2-norm condition number of Gm x n. We prove that, for any m >= 2, n >= 2, and x >= vertical bar n - m vertical bar + 1, kappa(2)(G(m x n)) satisfes 1/root 2 pi (c/x)(|n-m|+1) < P(kappa(2)(G(m x n))/n/(vertical bar n - m vertical bar + 1) > x) < 1/root 2 pi (C/x)(vertical bar n - m vertical bar + 1), where 0.245 <= c <= 2.000 and 5.013 <= C <= 6.414 are universal positive constants independent of m, n, and x. Moreover, for any m >= 2 and n >= 2, E( log kappa(2)(G(m x n))) < log n/|n- m| + 1 + 2.258. A similar pair of results for complex Gaussian random matrices is also established.
引用
收藏
页码:603 / 620
页数:18
相关论文
共 11 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1994, Concrete Mathematics: a Foundation for Computer Science
[3]   Upper and lower bounds for the tails of the distribution of the condition number of a Gaussian matrix [J].
Azaïs, JM ;
Wschebor, M .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (02) :426-440
[4]  
CHEN Z, 2005, P ACM SIGPLAN S PRIN
[5]  
CHEN Z, 2004, UTCS04526 DEP COMP S
[6]   EIGENVALUES AND CONDITION NUMBERS OF RANDOM MATRICES [J].
EDELMAN, A .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1988, 9 (04) :543-560
[7]   Tails of condition number distributions [J].
Edelman, A ;
Sutton, BD .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (02) :547-560
[8]  
Edelman A., 1989, Eigenvalues and condition numbers of random matrices
[9]   DISTRIBUTIONS OF MATRIX VARIATES + LATENT ROOTS DERIVED FROM NORMAL SAMPLES [J].
JAMES, AT .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (02) :475-&
[10]   ON THE EFFICIENCY OF ALGORITHMS OF ANALYSIS [J].
SMALE, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 13 (02) :87-121