Binding energies of the proton-bound amino acid dimers Gly center dot Gly, Ala center dot Ala, Gly center dot Ala, and Lys center dot Lys measured by blackbody infrared radiative dissociation

被引:127
作者
Price, WD [1 ]
Schnier, PD [1 ]
Williams, ER [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT CHEM,BERKELEY,CA 94720
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 1997年 / 101卷 / 04期
关键词
D O I
10.1021/jp9628702
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Arrhenius activation energies in the zero-pressure Limit for dissociation of gas-phase proton-bound homodimers of N,N-dimethylacetamide (N,N-DMA), glycine, alanine, and lysine and the heterodimer alanine glycine were measured using blackbody infrared radiative dissociation (BIRD). In combination with master equation modeling of the kinetic data, binding energies of these dimers were determined. A value of 1.25 +/- 0.05 eV is obtained for N,N-DMA and is in excellent agreement with that reported in the literature. The value obtained from the truncated Boltzmann model is significantly higher, indicating that the assumptions of this model do not apply to these ions. This is due to the competitive rates of photon emission and dissociation for these relatively large ions. The binding energies of the amino acid dimers are similar to 1.15 +/- 0.05 eV and an indistinguishable despite the difference in their gas-phase basicity and structure, The threshold dissociation energies can be accurately modeled using a range of dissociation parameters and absorption/emission rates. However, the absolute values of the dissociation rates depend more strongly on the absorption/emission rates. For N,N-DMA and glycine, an accurate fit was obtained using frequencies and transition dipole moments calculated at the ab initio RHF/2-31G* and MP2/2-31G* level, respectively. In order to obtain a similar accuracy using values obtained from AM1 semiempirical calculations, it was necessary to multiply the transition dipole moments by a factor of 3. These results demonstrate that in combination with master equation modeling, BIRD can be used to obtain accurate threshold dissociation energies of relatively small ions of biological interest.
引用
收藏
页码:664 / 673
页数:10
相关论文
共 52 条
[1]   DETERMINATION OF ION-LIGAND BOND-ENERGIES AND ION FRAGMENTATION ENERGIES OF ELECTROSPRAY-PRODUCED IONS BY COLLISION-INDUCED DISSOCIATION THRESHOLD MEASUREMENTS [J].
ANDERSON, SG ;
BLADES, AT ;
KLASSEN, J ;
KEBARLE, P .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY AND ION PROCESSES, 1995, 141 (03) :217-228
[2]   MASS-SPECTROMETRIC DETERMINATION OF THE AMINO-ACID-SEQUENCE OF PEPTIDES AND PROTEINS [J].
BIEMANN, K ;
MARTIN, SA .
MASS SPECTROMETRY REVIEWS, 1987, 6 (01) :1-75
[3]   ACTIVATION-ENERGIES FOR GAS-PHASE DISSOCIATIONS OF MULTIPLY CHARGED IONS FROM ELECTROSPRAY IONIZATION MASS-SPECTROMETRY [J].
BUSMAN, M ;
ROCKWOOD, AL ;
SMITH, RD .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (06) :2397-2400
[4]  
CAMBELL S, 1995, J AM CHEM SOC, V117, P12840
[5]   NAKED PROTEIN CONFORMATIONS - CYTOCHROME-C IN THE GAS-PHASE [J].
CLEMMER, DE ;
HUDGINS, RR ;
JARROLD, MF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (40) :10141-10142
[6]   COLLISION CROSS-SECTIONS FOR PROTEIN IONS [J].
COVEY, T ;
DOUGLAS, DJ .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1993, 4 (08) :616-623
[7]   STEPWISE SOLVATION ENTHALPIES OF PROTONATED WATER CLUSTERS - COLLISION-INDUCED DISSOCIATION AS AN ALTERNATIVE TO EQUILIBRIUM STUDIES [J].
DALLESKA, NF ;
HONMA, K ;
ARMENTROUT, PB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (25) :12125-12131
[8]   Cation-pi interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp [J].
Dougherty, DA .
SCIENCE, 1996, 271 (5246) :163-168
[9]   KINETICS OF THERMAL UNIMOLECULAR DISSOCIATION BY AMBIENT INFRARED RADIATION [J].
DUNBAR, RC .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (35) :8705-8712
[10]   Zero-pressure thermal-radiation-induced dissociation of gas-phase cluster ions: Comparison of theory and experiment for (H2O)(2)Cl(-) and (H2O)(3)Cl(-) [J].
Dunbar, RC ;
McMahon, TB ;
Tholmann, D ;
Tonner, DS ;
Salahub, DR ;
Wei, DQ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (51) :12819-12825