The energy landscape of a fast-folding protein mapped by Ala->Gly substitutions

被引:182
作者
Burton, RE [1 ]
Huang, GS [1 ]
Daugherty, MA [1 ]
Calderone, TL [1 ]
Oas, TG [1 ]
机构
[1] DUKE UNIV,MED CTR,DEPT BIOCHEM,DURHAM,NC 27710
关键词
D O I
10.1038/nsb0497-305
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A moderately stable protein with typical folding kinetics unfolds and refolds many times during its cellular lifetime. In monomeric lambda repressor this process is extremely rapid, with an average folded state lifetime of only 30 milliseconds. A thermostable variant of this protein (G46A/G48A) unfolds with the wild-type rate, but it folds in approximately 20 mu s making it the fastest-folding protein yet observed. The effects of alanine to glycine substitutions on the folding and unfolding rate constants of the G46A/G48A variant, measured by dynamic NMR spectroscopy, indicate that the transition state is an ensemble comprised of a disperse range of conformations. This structural diversity in the transition state is consistent with the idea that folding chains are directed towards the native state by a smooth funnel-like conformational energy landscape. The kinetic data for the folding of monomeric lambda repressor can be understood by merging the new energy landscape view of folding with traditional models. This hybrid model incorporates the conformational diversity of denatured and transition state ensembles, a transition state activation energy, and the importance of intrinsic helical stabilities.
引用
收藏
页码:305 / 310
页数:6
相关论文
共 47 条
  • [1] Bai YW, 1996, PROTEINS, V24, P145, DOI 10.1002/(SICI)1097-0134(199602)24:2<145::AID-PROT1>3.0.CO
  • [2] 2-I
  • [3] PROTEIN-FOLDING INTERMEDIATES - NATIVE-STATE HYDROGEN-EXCHANGE
    BAI, YW
    SOSNICK, TR
    MAYNE, L
    ENGLANDER, SW
    [J]. SCIENCE, 1995, 269 (5221) : 192 - 197
  • [4] On-pathway versus off-pathway folding intermediates
    Baldwin, RL
    [J]. FOLDING & DESIGN, 1996, 1 (01): : R1 - R8
  • [5] FUNNELS, PATHWAYS, AND THE ENERGY LANDSCAPE OF PROTEIN-FOLDING - A SYNTHESIS
    BRYNGELSON, JD
    ONUCHIC, JN
    SOCCI, ND
    WOLYNES, PG
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1995, 21 (03) : 167 - 195
  • [6] Microsecond protein folding through a compact transition state
    Burton, RE
    Huang, GS
    Daugherty, MA
    Fullbright, PW
    Oas, TG
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1996, 263 (02) : 311 - 322
  • [7] FOLDING KINETICS OF T4 LYSOZYME AND 9 MUTANTS AT 12-DEGREES-C
    CHEN, BL
    BAASE, WA
    NICHOLSON, H
    SCHELLMAN, JA
    [J]. BIOCHEMISTRY, 1992, 31 (05) : 1464 - 1476
  • [8] ALPHA-HELIX-FORMING PROPENSITIES IN PEPTIDES AND PROTEINS
    CREAMER, TP
    ROSE, GD
    [J]. PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1994, 19 (02): : 85 - 97
  • [9] The magnitude of the backbone conformational entropy change in protein folding
    DAquino, JA
    Gomez, J
    Hilser, VJ
    Lee, KH
    Amzel, LM
    Freire, E
    [J]. PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1996, 25 (02): : 143 - 156
  • [10] From Levinthal to pathways to funnels
    Dill, KA
    Chan, HS
    [J]. NATURE STRUCTURAL BIOLOGY, 1997, 4 (01) : 10 - 19