Assessment of the biodegradation potential of psychrotrophic microorganisms

被引:118
作者
Whyte, LG
Greer, CW
Inniss, WE
机构
[1] NATL RES COUNCIL CANADA,BIOTECHNOL RES INST,MONTREAL,PQ H4P 2R2,CANADA
[2] UNIV WATERLOO,DEPT BIOL,WATERLOO,ON N2L 3G1,CANADA
关键词
psychrotrophic microorganisms; biodegradation; catabolic gene probes; organic pollutants;
D O I
10.1139/m96-016
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bioremediation of polluted temperate and cold temperature environments may require the activity of psychrotrophic bacteria, because their low temperature growth range parallels the ambient temperatures encountered in these environments. In the present study, 135 psychrotrophic microorganisms isolated from a variety of ecosystems in Canada were examined for their ability to mineralize C-14-labelled toluene, naphthalene, dodecane, hexadecane, 2-chlorobiphenyl, and pentachlorophenol. A number of the psychrotrophic strains mineralized toluene, naphthalene, dodecane, and hexadecane. None of the psychrotrophs were capable of mineralizing 2-chlorobiphenyl or pentachlorophenol. Those strains demonstrating mineralization activity were subsequently screened by the polymerase chain reaction (PCR) and Southern hybridization of PCR products for the presence of catabolic genes (alkB, ndoB, todCl, and xylE) involved in known bacterial biodegradative pathways for these compounds. Some of the psychrotrophs able to mineralize toluene and naphthalene possessed catabolic genes that hybridized to xylE or todCl, and ndoB, respectively. The alkB PCR fragments obtained from the strains that mineralized dodecane and hexadecane did not hybridize to an alkB gene probe derived from Pseudomonas oleovorans. Psychrotrophic strain Q15, identified as a Rhodococcus sp., also mineralized the C-28 n-paraffin octacosane. A gene probe constructed from the ''alkB'' PCR fragment from strain Q15 did hybridize with the alkB PCR fragments from most of the psychrotrophic alkane biodegraders, indicating that the alkB primers may be amplifying another gene(s), perhaps with low homology to P. oleovorans alkB, which may be involved in the biodegradation of both short chain (dodecane) and longer chain alkanes (hexadecane, octacosane). All of the psychrotrophic biodegradative isolates examined were capable of mineralization activity at both 23 and 5 degrees C, indicating their potential for low temperature bioremediation of petroleum hydrocarbon contaminated sites.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 35 条
[1]   PRUDHOE CRUDE-OIL IN ARCTIC MARINE ICE, WATER, AND SEDIMENT ECOSYSTEMS - DEGRADATION AND INTERACTIONS WITH MICROBIAL AND BENTHIC COMMUNITIES [J].
ATLAS, RM ;
HOROWITZ, A ;
BUSDOSH, M .
JOURNAL OF THE FISHERIES RESEARCH BOARD OF CANADA, 1978, 35 (05) :585-590
[3]   DEGRADATION OF CHLOROPHENOLS IN SOIL, SEDIMENT AND WATER AT LOW-TEMPERATURE [J].
BAKER, MD ;
MAYFIELD, CI ;
INNISS, WE .
WATER RESEARCH, 1980, 14 (12) :1765-1771
[4]  
Bossert I, 1984, PETROLEUM MICROBIOLO, P435
[5]   CHARACTERIZATION OF AQUASPIRILLUM-ARCTICUM SP-NOV, A NEW PSYCHROPHILIC BACTERIUM [J].
BUTLER, BJ ;
MCCALLUM, KL ;
INNISS, WE .
SYSTEMATIC AND APPLIED MICROBIOLOGY, 1989, 12 (03) :263-266
[6]   BIOTRANSFORMATION OF DI-N-BUTYL PHTHALATE BY A PSYCHROTROPHIC PSEUDOMONAS-FLUORESCENS (BGW) ISOLATED FROM SUBSURFACE ENVIRONMENT [J].
CHAURET, C ;
MAYFIELD, CI ;
INNISS, WE .
CANADIAN JOURNAL OF MICROBIOLOGY, 1995, 41 (01) :54-63
[7]   FACTORS INFLUENCING HYDROCARBON DEGRADATION IN 3 FRESH-WATER LAKES [J].
COONEY, JJ ;
SILVER, SA ;
BECK, EA .
MICROBIAL ECOLOGY, 1985, 11 (02) :127-137
[8]   EXPRESSION OF NAPHTHALENE OXIDATION GENES IN ESCHERICHIA-COLI RESULTS IN THE BIOSYNTHESIS OF INDIGO [J].
ENSLEY, BD ;
RATZKIN, BJ ;
OSSLUND, TD ;
SIMON, MJ ;
WACKETT, LP ;
GIBSON, DT .
SCIENCE, 1983, 222 (4620) :167-169
[9]   INVOLVEMENT OF PLASMIDS IN TOTAL DEGRADATION OF CHLORINATED BIPHENYLS [J].
FURUKAWA, K ;
CHAKRABARTY, AM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1982, 44 (03) :619-626
[10]  
Furukawa Kensuke, 1994, Biodegradation, V5, P289, DOI 10.1007/BF00696466