Flip dynamics in octagonal rhombus tiling sets

被引:6
作者
Destainville, N [1 ]
机构
[1] Univ Toulouse 3, Phys Quant Lab, CNRS, UMR 5626,IRSAMC, F-31062 Toulouse 04, France
关键词
D O I
10.1103/PhysRevB.88.030601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the properties of classical single flip dynamics in sets of two-dimensional random rhombus tilings. Single flips are local moves involving three tiles which sample the tiling sets via Monte Carlo Markov chains. We determine the ergodic times of these dynamical systems (at infinite temperature): they grow with the system size N-T like const. X N-T(2) lnN(T); these dynamics are rapidly mixing. We use an inherent symmetry of tiling sets and a powerful tool from probability theory, the coupling technique. We also point out the interesting occurrence of Gumbel distributions.
引用
收藏
页数:4
相关论文
共 25 条
[1]  
ALDOUS D, 1983, LECT NOTES MATH, V986, P243
[2]   First low-temperature radiotracer studies of diffusion in icosahedral quasicrystals [J].
Bluher, R ;
Scharwaechter, P ;
Frank, W ;
Kronmuller, H .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :1014-1017
[3]  
CAILLARD D, 2000, QUASICRYSTALS CURREN
[4]  
Cohn H., 1998, NEW YORK J MATH, V4, P137
[5]   DUALIZATION OF MULTIGRIDS [J].
DEBRUIJN, NG .
JOURNAL DE PHYSIQUE, 1986, 47 (C-3) :9-18
[6]   Entropy and boundary conditions in random rhombus tilings [J].
Destainville, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (29) :6123-6139
[7]   Fixed-boundary octagonal random tilings: A combinatorial approach [J].
Destainville, N ;
Mosseri, R ;
Bailly, F .
JOURNAL OF STATISTICAL PHYSICS, 2001, 102 (1-2) :147-190
[8]  
DESTAINVILLE N, IN PRESS
[9]   QUASICRYSTALS - A NEW CLASS OF ORDERED STRUCTURES - COMMENT [J].
ELSER, V .
PHYSICAL REVIEW LETTERS, 1985, 54 (15) :1730-1730
[10]  
Gumbel E. J., 1958, STAT EXTREME