A data-driven approach to establishing microstructure-property relationships in porous transport layers of polymer electrolyte fuel cells

被引:61
作者
Cecen, A. [1 ]
Fast, T. [2 ]
Kumbur, E. C. [1 ]
Kalidindi, S. R. [2 ]
机构
[1] Drexel Univ, Dept Mech Engn & Mech, Electrochem Energy Syst Lab, Philadelphia, PA 19104 USA
[2] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Fuel cells; Microstructure; Structure-property correlations; Transport; CHORD-LENGTH DISTRIBUTION; GAS-DIFFUSION LAYER; LOCALIZATION RELATIONSHIPS; RECONSTRUCTIONS; DISTRIBUTIONS; STATISTICS; FRAMEWORK; SELECTION;
D O I
10.1016/j.jpowsour.2013.06.100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The diffusion media (DM) has been shown to be a vital component for performance of polymer electrolyte fuel cells (PEFCs). The DM has a dual-layer structure composed of a macro-substrate referred to as the gas diffusion layer (GDL) coated with a micro-porous layer (MPL). Efficient prediction of the effective transport properties of the DM from its internal structure is essential to optimizing the multifunctional characteristics of this critical component. In this work, a unique data-driven approach to establishing structure-property correlations is introduced and applied to the case of gas diffusion in the GDL and MPL This new approach provides an automated process to produce unbiased estimators to microstructural variance, in contrast to many process-related (hence biased) parameters employed by prominent correlations in the field. The present approach starts with a rigorous quantification of microstructure in the form of n-point statistics. It is followed by the identification of the key aspects of the internal structure through the use of principle component analysis. A data-driven correlation is established when the principal components are related to effective diffusivity by multivariate linear regression. This data-driven approach is compared to the conventional correlations and shown to achieve a very high accuracy for capturing the diffusive transport in the tested PEFC components. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:144 / 153
页数:10
相关论文
共 37 条
[1]   Finite approximations to the second-order properties closure in single phase polycrystals [J].
Adams, BL ;
Gao, X ;
Kalidindi, SR .
ACTA MATERIALIA, 2005, 53 (13) :3563-3577
[2]   Application of water barrier layers in a proton exchange membrane fuel cell for improved water management at low humidity conditions [J].
Blanco, Mauricio ;
Wilkinson, David P. ;
Wang, Haijiang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (05) :3635-3648
[3]   SOLID MIXTURE PERMITTIVITIES [J].
BROWN, WF .
JOURNAL OF CHEMICAL PHYSICS, 1955, 23 (08) :1514-1517
[4]   3-D Microstructure Analysis of Fuel Cell Materials: Spatial Distributions of Tortuosity, Void Size and Diffusivity [J].
Cecen, A. ;
Wargo, E. A. ;
Hanna, A. C. ;
Turner, D. M. ;
Kalidindi, S. R. ;
Kumbur, E. C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (03) :B299-B307
[5]   Gas diffusion layer for proton exchange membrane fuel cells-A review [J].
Cindrella, L. ;
Kannan, A. M. ;
Lin, J. F. ;
Saminathan, K. ;
Ho, Y. ;
Lin, C. W. ;
Wertz, J. .
JOURNAL OF POWER SOURCES, 2009, 194 (01) :146-160
[6]  
DELARUE, 1959, ELECTROCHEM SOC, V6, P827
[7]   Formulation and calibration of higher-order elastic localization relationships using the MKS approach [J].
Fast, Tony ;
Kalidindi, Surya R. .
ACTA MATERIALIA, 2011, 59 (11) :4595-4605
[8]   A new framework for computationally efficient structure-structure evolution linkages to facilitate high-fidelity scale bridging in multi-scale materials models [J].
Fast, Tony ;
Niezgoda, Stephen R. ;
Kalidindi, Surya R. .
ACTA MATERIALIA, 2011, 59 (02) :699-707
[9]   Gradient-based microstructure reconstructions from distributions using fast Fourier transforms [J].
Fullwood, D. T. ;
Kalidindi, S. R. ;
Niezgoda, S. R. ;
Fast, A. ;
Hampson, N. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 494 (1-2) :68-72
[10]   Microstructure reconstructions from 2-point statistics using phase-recovery algorithms [J].
Fullwood, David T. ;
Niezgoda, Stephen R. ;
Kalidindi, Surya R. .
ACTA MATERIALIA, 2008, 56 (05) :942-948