Flexible interim analyses in clinical trials using multistage adaptive test designs

被引:18
作者
Wassmer, G
Eisebitt, R
Coburger, S
机构
[1] Univ Cologne, Inst Med Stat Informat & Epidemiol, Dept Med Stat Informat & Epidemiol, D-50931 Cologne, Germany
[2] ClinRes GmbH, Cologne, Germany
来源
DRUG INFORMATION JOURNAL | 2001年 / 35卷 / 04期
关键词
adaptive designs; early stopping; group sequential tests;
D O I
10.1177/009286150103500410
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Data-dependent interim analyses are a useful tool in confirmatory Phase III or IV clinical research. In particular redesigning the sample size in an interim analysis based on the results observed to date considerably improves the power of the trial since the best available information at the time is used for the sample size adjustment. In recent years, several methods were proposed that enable a flexible design through the use of adaptive interim analyses while maintaining the type I error rate. In this article, these methods are briefly reviewed. We recommend a strategy that copes well with the demands of practice. Examples illustrate the use of multistage adaptive designs that make it possible to calculate confidence intervals and bias adjusted point estimates.
引用
收藏
页码:1131 / 1146
页数:16
相关论文
共 81 条
[1]  
[Anonymous], 1998, CPMPICH36396
[2]  
Bauer P, 1999, STAT MED, V18, P1833, DOI 10.1002/(SICI)1097-0258(19990730)18:14<1833::AID-SIM221>3.3.CO
[3]  
2-V
[4]   AN ADAPTIVE METHOD FOR ESTABLISHING A DOSE-RESPONSE RELATIONSHIP [J].
BAUER, P ;
ROHMEL, J .
STATISTICS IN MEDICINE, 1995, 14 (14) :1595-1607
[5]   EVALUATION OF EXPERIMENTS WITH ADAPTIVE INTERIM ANALYSES [J].
BAUER, P ;
KOHNE, K .
BIOMETRICS, 1994, 50 (04) :1029-1041
[6]  
Bauer P, 2001, METHOD INFORM MED, V40, P117
[7]  
Bauer P., 1989, BIOMETRIE INFORMATIK, V20, P130
[8]   INTERNAL PILOT-STUDIES FOR ESTIMATING SAMPLE-SIZE [J].
BIRKETT, MA ;
DAY, SJ .
STATISTICS IN MEDICINE, 1994, 13 (23-24) :2455-2463
[9]  
Braitman L E, 1993, J Biopharm Stat, V3, P249, DOI 10.1080/10543409308835063
[10]  
Chi G Y, 1999, J Biopharm Stat, V9, P537, DOI 10.1081/BIP-100101194