The influence of negative emission technologies and technology policies on the optimal climate mitigation portfolio

被引:21
作者
Lemoine, Derek M. [1 ]
Fuss, Sabine [3 ]
Szolgayova, Jana [3 ,4 ]
Obersteiner, Michael [3 ]
Kammen, Daniel M. [2 ]
机构
[1] Univ Arizona, Dept Econ, Tucson, AZ 85721 USA
[2] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA
[3] Int Inst Appl Syst Anal, Ecosyst Serv & Management Program, A-2361 Laxenburg, Austria
[4] Comenius Univ, Dept Appl Math & Stat, Bratislava, Slovakia
基金
美国国家科学基金会;
关键词
RESEARCH-AND-DEVELOPMENT; CARBON-DIOXIDE CAPTURE; BIO-ENERGY; ECONOMIC-ANALYSIS; CO2; CAPTURE; STORAGE; BIOMASS; TARGETS; STRATEGIES; TAXES;
D O I
10.1007/s10584-011-0269-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Combining policies to remove carbon dioxide (CO2) from the atmosphere with policies to reduce emissions could decrease CO2 concentrations faster than possible via natural processes. We model the optimal selection of a dynamic portfolio of abatement, research and development (R&D), and negative emission policies under an exogenous CO2 constraint and with stochastic technological change. We find that near-term abatement is not sensitive to the availability of R&D policies, but the anticipated availability of negative emission strategies can reduce the near-term abatement optimally undertaken to meet 2A degrees C temperature limits. Further, planning to deploy negative emission technologies shifts optimal R&D funding from "carbon-free" technologies into "emission intensity" technologies. Making negative emission strategies available enables an 80% reduction in the cost of keeping year 2100 CO2 concentrations near their current level. However, negative emission strategies are less important if the possibility of tipping points rules out using late-century net negative emissions to temporarily overshoot the CO2 constraint earlier in the century.
引用
收藏
页码:141 / 162
页数:22
相关论文
共 68 条
[1]   Warming caused by cumulative carbon emissions towards the trillionth tonne [J].
Allen, Myles R. ;
Frame, David J. ;
Huntingford, Chris ;
Jones, Chris D. ;
Lowe, Jason A. ;
Meinshausen, Malte ;
Meinshausen, Nicolai .
NATURE, 2009, 458 (7242) :1163-1166
[2]  
[Anonymous], SECTORAL EMISSION MI
[3]  
[Anonymous], 2009, COP ACC
[4]   Carbon capture and storage from fossil fuels and biomass -: Costs and potential role in stabilizing the atmosphere [J].
Azar, Christian ;
Lindgren, Kristian ;
Larson, Eric ;
Moellersten, Kenneth .
CLIMATIC CHANGE, 2006, 74 (1-3) :47-79
[5]   The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS) [J].
Azar, Christian ;
Lindgren, Kristian ;
Obersteiner, Michael ;
Riahi, Keywan ;
van Vuuren, Detlef P. ;
den Elzen, K. Michel G. J. ;
Moellersten, Kenneth ;
Larson, Eric D. .
CLIMATIC CHANGE, 2010, 100 (01) :195-202
[6]   Uncertainty and endogenous technical change in climate policy models [J].
Baker, Erin ;
Shittu, Ekundayo .
ENERGY ECONOMICS, 2008, 30 (06) :2817-2828
[7]   Investment in risky R&D programs in the face of climate uncertainty [J].
Baker, Erin ;
Adu-Bonnah, Kwarne .
ENERGY ECONOMICS, 2008, 30 (02) :465-486
[8]   Advanced solar R&D: Combining economic analysis with expert elicitations to inform climate policy [J].
Baker, Erin ;
Chon, Haewon ;
Keisler, Jeffrey .
ENERGY ECONOMICS, 2009, 31 :S37-S49
[9]  
Benson S, 2005, IPCC SPECIAL REPORT ON CARBON DIOXIDE CAPTURE AND STORAGE, P195
[10]   The Politics of Geoengineering [J].
Blackstock, Jason J. ;
Long, Jane C. S. .
SCIENCE, 2010, 327 (5965) :527-527