Functional linear model

被引:407
作者
Cardot, H
Ferraty, F
Sarda, P
机构
[1] INRA, Unit Biometrie & Intelligence Artificielle, F-31326 Castanet Tolosan, France
[2] Univ Toulouse 3, Lab Stat & Probabil, CNRS, UMR C5583, F-31062 Toulouse, France
关键词
functional linear model; functional data analysis; Hilbert spaces; convergence;
D O I
10.1016/S0167-7152(99)00036-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study a regression model in which explanatory variables are sampling points of a continuous-time process. We propose an estimator of regression by means of a Functional Principal Component Analysis analogous to the one introduced by Bosq [(1991) NATO, ASI Series, pp. 509-529] in the case of Hilbertian AR processes. Both convergence in probability and almost sure convergence of this estimator are stated. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:11 / 22
页数:12
相关论文
共 14 条