A splice site mutant of maize activates cryptic splice sites, elicits intron inclusion and exon exclusion, and permits branch point elucidation

被引:27
作者
Lal, SL [1 ]
Choi, JH [1 ]
Shaw, JR [1 ]
Hannah, LC [1 ]
机构
[1] Univ Florida, Program Plant Mol & Cellular Biol & Hort Sci, Gainesville, FL 32611 USA
关键词
D O I
10.1104/pp.121.2.411
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
DNA sequence analysis of the bt2-7503 mutant allele of the maize brittle-2 gene revealed a point mutation in the 5' terminal sequence of intron 3 changing GT to AT. This lesion completely abolishes use of this splice site, activates two cryptic splice sites, and alters the splicing pattern from extant splice sites, One activated donor site, located nine nt 5' to the normal splice donor site, begins with the dinucleotide CC. While non-consensus, this sequence still permits both trans-esterification reactions of pre-mRNA splicing. A second cryptic site located 23 nt 5' to the normal splice site and beginning with GA, undergoes the first trans-esterification reaction leading to lariat formation, but lacks the ability to participate in the second reaction. Accumulation of this splicing intermediate and use of an innovative reverse transcriptase-polymerase chain reaction technique (). Vogel, R.H. Wolfgang, T. Borner [1997] Nucleic Acids Res 25: 2030-2031) led to the identification of 3' intron sequences needed for lariat formation. In most splicing reactions, neither cryptic site is recognized. Most mature transcripts include intron 3, while the second most frequent class lacks exon 3. Traditionally, the former class of transcripts is taken as evidence for the intron definition of splicing, while the latter class has given credence to the exon definition of splicing.
引用
收藏
页码:411 / 418
页数:8
相关论文
共 53 条
[1]   SEQUENCE REQUIREMENTS FOR SPLICING OF HIGHER EUKARYOTIC NUCLEAR PRE-MESSENGER-RNA [J].
AEBI, M ;
HORNIG, H ;
PADGETT, RA ;
REISER, J ;
WEISSMANN, C .
CELL, 1986, 47 (04) :555-565
[2]  
ANTONIOU M, 1995, PREMRNA PROCESSING, P187
[3]  
BAE JM, 1990, MAYDICA, V35, P317
[4]   THE EXPRESSION OF A NOPALINE SYNTHASE - HUMAN GROWTH-HORMONE CHIMERIC GENE IN TRANSFORMED TOBACCO AND SUNFLOWER CALLUS-TISSUE [J].
BARTA, A ;
SOMMERGRUBER, K ;
THOMPSON, D ;
HARTMUTH, K ;
MATZKE, MA ;
MATZKE, AJM .
PLANT MOLECULAR BIOLOGY, 1986, 6 (05) :347-357
[5]   EXON RECOGNITION IN VERTEBRATE SPLICING [J].
BERGET, SM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (06) :2411-2414
[6]   Splice site selection in plant pre-mRNA splicing [J].
Brown, JWS ;
Simpson, CG .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1998, 49 :77-95
[7]   A CATALOG OF SPLICE JUNCTION AND PUTATIVE BRANCH POINT SEQUENCES FROM PLANT INTRONS [J].
BROWN, JWS .
NUCLEIC ACIDS RESEARCH, 1986, 14 (24) :9549-9559
[8]   Arabidopsis intron mutations and pre-mRNA splicing [J].
Brown, JWS .
PLANT JOURNAL, 1996, 10 (05) :771-780
[9]   Arabidopsis consensus intron sequences [J].
Brown, JWS ;
Smith, P ;
Simpson, CG .
PLANT MOLECULAR BIOLOGY, 1996, 32 (03) :531-535
[10]   IN-VIVO ANALYSIS OF INTRON PROCESSING USING SPLICING-DEPENDENT REPORTER GENE ASSAYS [J].
CARLEURIOSTE, JC ;
KO, CH ;
BENITO, MI ;
WALBOT, V .
PLANT MOLECULAR BIOLOGY, 1994, 26 (06) :1785-1795