Decrease in peptide methionine sulfoxide reductase in Alzheimer's disease brain

被引:208
作者
Gabbita, SP
Aksenov, MY
Lovell, MA
Markesbery, WR
机构
[1] Univ Kentucky, Sanders Brown Ctr Aging, Dept Neurol, Lexington, KY 40536 USA
[2] Univ Kentucky, Sanders Brown Ctr Aging, Dept Pharmacol, Lexington, KY 40536 USA
[3] Univ Kentucky, Sanders Brown Ctr Aging, Dept Chem, Lexington, KY 40536 USA
[4] Univ Kentucky, Sanders Brown Ctr Aging, Dept Pathol, Lexington, KY 40536 USA
关键词
Alzheimer's disease; methionine sulfoxide; peptide methionine sulfoxide reductase; reactive oxygen species; oxidative stress;
D O I
10.1046/j.1471-4159.1999.0731660.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Previous studies have shown that the pathophysiology of Alzheimer's disease (AD) is linked to oxidative stress. Oxidative damage to different biomolecular components of the brain is a characteristic feature of AD. Recent evidence suggests that methionine may act as an antioxidant defense molecule in proteins by its ability to scavenge oxidants and, in the process, undergo oxidation to form methionine sulfoxide, The enzyme peptide, methionine sulfoxide reductase (MsrA), reverses methionine sulfoxide back to methionine, which once again is able to scavenge oxidants, The purpose of this study was to measure the activity of MsrA in the brain of AD patients compared with control subjects. Our results showed that there was a decline in MsrA activity in all brain regions studied in AD and this decline reached statistical significance in the superior and middle temporal gyri (p < 0.001), inferior parietal lobule (p < 0.05), and the hippocampus(p < 0.05) in AD. An elevation of protein carbonyl content was found in all brain regions except the cerebellum in AD and reached statistical significance in the superior and middle temporal gyri and hippocampus. Messenger RNA analysis suggests that the loss in enzyme activity may be the result of a posttranslational modification of MsrA or a defect of translation resulting in inferior processing of the MsrA mRNA. Our results suggest that a decline in MsrA activity could reduce the antioxidant defenses and increase the oxidation of critical proteins in neurons in the brain in AD.
引用
收藏
页码:1660 / 1666
页数:7
相关论文
共 43 条
[1]   The expression of creatine kinase isoenzymes in neocortex of patients with neurodegenerative disorders: Alzheimer's and Pick's disease [J].
Aksenov, MY ;
Aksenova, MV ;
Payne, RM ;
Smith, CD ;
Markesbery, WR ;
Carney, JM .
EXPERIMENTAL NEUROLOGY, 1997, 146 (02) :458-465
[2]   Consensus recommendations for the postmortem diagnosis of Alzheimer's disease [J].
Ball, M ;
Braak, H ;
Coleman, P ;
Dickson, D ;
Duyckaerts, C ;
Gambetti, P ;
Hansen, L ;
Hyman, B ;
Jellinger, K ;
Markesbery, W ;
Perl, D ;
Powers, J ;
Price, J ;
Trojanowski, JQ ;
Wisniewski, H ;
Phelps, C ;
Khachaturian, Z .
NEUROBIOLOGY OF AGING, 1997, 18 (04) :S1-S2
[3]  
BEAL MF, 1994, NEUROBIOL AGING, V15, pS171
[4]   Protein oxidation in aging, disease, and oxidative stress [J].
Berlett, BS ;
Stadtman, ER .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (33) :20313-20316
[5]   REDUCTION OF N-ACETYL METHIONINE SULFOXIDE - A SIMPLE ASSAY FOR PEPTIDE METHIONINE SULFOXIDE REDUCTASE [J].
BROT, N ;
WERTH, J ;
KOSTER, D ;
WEISSBACH, H .
ANALYTICAL BIOCHEMISTRY, 1982, 122 (02) :291-294
[6]   BIOCHEMISTRY AND PHYSIOLOGICAL-ROLE OF METHIONINE SULFOXIDE RESIDUES IN PROTEINS [J].
BROT, N ;
WEISSBACH, H .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1983, 223 (01) :271-281
[7]   DECREASED LEVEL OF CREATINE KINASE-BB IN THE FRONTAL-CORTEX OF ALZHEIMER PATIENTS [J].
BURBAEVA, GS ;
AKSENOVA, MV ;
MAKARENKO, IG .
DEMENTIA, 1992, 3 (02) :91-94
[8]   POTENTIAL MECHANISM OF EMPHYSEMA - ALPHA-1-PROTEINASE INHIBITOR RECOVERED FROM LUNGS OF CIGARETTE SMOKERS CONTAINS OXIDIZED METHIONINE AND HAS DECREASED ELASTASE INHIBITORY CAPACITY [J].
CARP, H ;
MILLER, F ;
HOIDAL, JR ;
JANOFF, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (06) :2041-2045
[9]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[10]   Modulation of potassium channel function by methionine oxidation and reduction [J].
Ciorba, MA ;
Heinemann, SH ;
Weissbach, H ;
Brot, N ;
Hoshi, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (18) :9932-9937