A study of adatom ripening on an Al (111) surface with machine learning force fields

被引:32
作者
Botu, V. [1 ]
Chapman, J. [1 ]
Ramprasad, R. [1 ]
机构
[1] Univ Connecticut, Storrs, CT 06269 USA
关键词
Molecular dynamics; Machine learning; Force field; Island ripening; Surface growth; ATOMIC LAYER DEPOSITION; DENSITY-FUNCTIONAL THEORY; AUGMENTED-WAVE METHOD; MOLECULAR-DYNAMICS; SELF-DIFFUSION; GROWTH; AL(111); SIMULATIONS; ENERGIES; METALS;
D O I
10.1016/j.commatsci.2016.12.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Surface phenomena are increasingly becoming important in exploring nanoscale materials growth and characterization. Consequently, the need for atomistic based simulations is increasing. Recently, we proposed a machine learning approach, known as AGNI, that allows fast and quantum mechanical accurate atomic force predictions given an atom's neighborhood environment. Here, we make use of such force fields to study and characterize the nanoscale diffusion and growth processes occurring on an Al (111) surface. In particular we focus on the adatom ripening phenomena, confirming past experimental findings, wherein a low and high temperature growth regime were observed using entirely molecular dynamics simulations. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:332 / 335
页数:4
相关论文
共 30 条
[1]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[2]   Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations [J].
Behler, Joerg .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (40) :17930-17955
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Low-symmetry diffusion barriers in homoepitaxial growth of Al(111) [J].
Bogicevic, A ;
Stromquist, J ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 1998, 81 (03) :637-640
[5]   Al dimer dynamics on Al(111) [J].
Bogicevic, A ;
Hyldgaard, P ;
Wahnstrom, G ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 1998, 81 (01) :172-175
[6]   Learning scheme to predict atomic forces and accelerate materials simulations [J].
Botu, V. ;
Ramprasad, R. .
PHYSICAL REVIEW B, 2015, 92 (09)
[7]  
Botu V., 2016, J PHYS CHEM C
[8]   Adaptive machine learning framework to accelerate ab initio molecular dynamics [J].
Botu, Venkatesh ;
Ramprasad, Rampi .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1074-1083
[9]   Dimer binding energies on fcc(111) metal surfaces [J].
Busse, C ;
Langenkamp, W ;
Polop, C ;
Petersen, A ;
Hansen, H ;
Linke, U ;
Feibelman, PJ ;
Michely, T .
SURFACE SCIENCE, 2003, 539 (1-3) :L560-L566
[10]   Adatom formation and atomic layer growth on Al(111) by ion bombardment: experiments and molecular dynamics simulations [J].
Busse, C ;
Engin, C ;
Hansen, G ;
Linke, U ;
Michely, T ;
Urbassek, HM .
SURFACE SCIENCE, 2001, 488 (03) :346-366