Differential accumulation of salicylic acid and salicylic acid-sensitive catalase in different rice tissues

被引:98
作者
Chen, ZX
Iyer, S
Caplan, A
Klessig, DF
Fan, BF
机构
[1] RUTGERS STATE UNIV,WAKSMAN INST,PISCATAWAY,NJ 08855
[2] RUTGERS STATE UNIV,DEPT MOL BIOL & BIOCHEM,PISCATAWAY,NJ 08855
关键词
D O I
10.1104/pp.114.1.193
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We previously proposed that salicylic acid (SA)-sensitive catalases serve as biological targets of SA in plant defense responses. To further examine the role of SA-sensitive catalases, we have analyzed the relationship between SA levels and SA sensitivity of catalases in different rice (Oryza sativa) tissues. We show here that, whereas rice shoots contain extremely high levels of free SA, as previously reported (I. Raskin, H. Skubatz, W. Tang, B.J.D. Meeuse [1990] Ann Bot 66: 369-373; P. Silverman, M. Seskar, D. Kanter, P. Schweizer, I.-P. Metraux, I. Raskin [1995] Plant Physiol 108: 633-639), vice roots and cell-suspension cultures have very low SA levels. Catalases from different rice tissues also exhibit differences in sensitivity to SA. Catalase from rice shoots is insensitive to SA, but roots and cell-suspension cultures contain SA-sensitive catalase. The difference in SA sensitivity of catalases from these different tissues correlates with the tissue-specific expression of two catalase genes, CatA and CatB, which encode highly distinctive catalase proteins. CatA, which encodes a catalase with relatively low sequence homology to the tobacco SA-sensitive catalases, is expressed at high levels exclusively in the shoots. On the other hand, in roots and cell-suspension cultures, with northern analysis we detected expression of only the CatB gene, which encodes a catalase with higher sequence homology to tobacco catalases. The role of catalases in mediating some of the SA-induced responses is discussed in light of these results and the recently defined mechanisms of catalase inhibition by SA.
引用
收藏
页码:193 / 201
页数:9
相关论文
共 65 条
[1]  
ANTONIW JF, 1980, PHYTOPATHOL Z, V98, P331
[2]   HYDROGEN-PEROXIDE DOES NOT FUNCTION DOWNSTREAM OF SALICYLIC-ACID IN THE INDUCTION OF PR PROTEIN EXPRESSION [J].
BI, YM ;
KENTON, P ;
MUR, L ;
DARBY, R ;
DRAPER, J .
PLANT JOURNAL, 1995, 8 (02) :235-245
[3]   A MUTATION IN ARABIDOPSIS THAT LEADS TO CONSTITUTIVE EXPRESSION OF SYSTEMIC ACQUIRED-RESISTANCE [J].
BOWLING, SA ;
GUO, A ;
CAO, H ;
GORDON, AS ;
KLESSIG, DF ;
DONG, XI .
PLANT CELL, 1994, 6 (12) :1845-1857
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]  
CAO H, 1994, PLANT CELL, V6, P1583, DOI 10.1105/tpc.6.11.1583
[6]   Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light [J].
Chamnongpol, S ;
Willekens, H ;
Langebartels, C ;
VanMontagu, M ;
Inze, D ;
VanCamp, W .
PLANT JOURNAL, 1996, 10 (03) :491-503
[7]   HEME PROSTHETIC GROUP REQUIRED FOR ACETYLATION OF PROSTAGLANDIN-H SYNTHASE BY ASPIRIN [J].
CHEN, YNP ;
MARNETT, LJ .
FASEB JOURNAL, 1989, 3 (11) :2294-2297
[8]   INDUCTION, MODIFICATION, AND TRANSDUCTION OF THE SALICYLIC-ACID SIGNAL IN PLANT DEFENSE RESPONSES [J].
CHEN, ZX ;
MALAMY, J ;
HENNING, J ;
CONRATH, U ;
SANCHEZCASAS, P ;
SILVA, H ;
RICIGLIANO, J ;
KLESSIG, DF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4134-4137
[9]   ACTIVE OXYGEN SPECIES IN THE INDUCTION OF PLANT SYSTEMIC ACQUIRED-RESISTANCE BY SALICYLIC-ACID [J].
CHEN, ZX ;
SILVA, H ;
KLESSIG, DF .
SCIENCE, 1993, 262 (5141) :1883-1886
[10]   IDENTIFICATION OF A SOLUBLE SALICYLIC ACID-BINDING PROTEIN THAT MAY FUNCTION IN SIGNAL TRANSDUCTION IN THE PLANT DISEASE-RESISTANCE RESPONSE [J].
CHEN, ZX ;
KLESSIG, DF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (18) :8179-8183