Numerical study of grid turbulence in two dimensions and comparison with experiments on turbulent soap films

被引:17
作者
Bruneau, CH
Greffier, O
Kellay, H
机构
[1] Univ Bordeaux 1, F-33405 Talence, France
[2] Univ Bordeaux 1, Ctr Phys Mol Opt & Hertzienne, F-33405 Talence, France
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 02期
关键词
D O I
10.1103/PhysRevE.60.R1162
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Numerical simulations of two dimensional channel flow behind an array of cylinders are carried out for high Reynolds numbers. Results for the energy density and enstrophy spectra, as well as for velocity and vorticity differences, are presented. The results compare favorably with recent experiments carried out with turbulent soap films. Some marked deviations from expected behavior are found for the enstrophy spectrum and for moments of vorticity increments. [S1063-651X(99)51608-5].
引用
收藏
页码:R1162 / R1165
页数:4
相关论文
共 24 条
[1]   A penalization method to take into account obstacles in incompressible viscous flows [J].
Angot, P ;
Bruneau, CH ;
Fabrie, P .
NUMERISCHE MATHEMATIK, 1999, 81 (04) :497-520
[2]  
BABIANO A, 1985, J ATMOS SCI, V42, P941, DOI 10.1175/1520-0469(1985)042<0941:SFADLI>2.0.CO
[3]  
2
[4]  
Batchelor G K., 1969, Phys. Fluids, V12, pII, DOI [10.1063/1.1692443, DOI 10.1063/1.1692443]
[5]   Velocity fluctuations in a turbulent soap film: The third moment in two dimensions [J].
Belmonte, A ;
Goldburg, WI ;
Kellay, H ;
Rutgers, MA ;
Martin, B ;
Wu, XL .
PHYSICS OF FLUIDS, 1999, 11 (05) :1196-1200
[6]   SPECTRAL EXPONENTS OF ENSTROPHY CASCADE IN STATIONARY 2-DIMENSIONAL HOMOGENEOUS TURBULENCE [J].
BORUE, V .
PHYSICAL REVIEW LETTERS, 1993, 71 (24) :3967-3970
[7]   INVERSE ENERGY CASCADE IN STATIONARY 2-DIMENSIONAL HOMOGENEOUS TURBULENCE [J].
BORUE, V .
PHYSICAL REVIEW LETTERS, 1994, 72 (10) :1475-1478
[8]   SMALL-SCALE DYNAMICS OF HIGH-REYNOLDS-NUMBER TWO-DIMENSIONAL TURBULENCE [J].
BRACHET, ME ;
MENEGUZZI, M ;
SULEM, PL .
PHYSICAL REVIEW LETTERS, 1986, 57 (06) :683-686
[9]   AN EFFICIENT SCHEME FOR SOLVING STEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BRUNEAU, CH ;
JOURON, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 89 (02) :389-413
[10]   EFFECTIVE DOWNSTREAM BOUNDARY-CONDITIONS FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BRUNEAU, CH ;
FABRIE, P .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1994, 19 (08) :693-705