Primal-dual strategy for constrained optimal control problems

被引:206
作者
Bergounioux, M
Ito, K
Kunisch, K
机构
[1] Univ Orleans, CNRS, UMR 6628, UFR Sci, F-45067 Orleans 2, France
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Graz Univ, Inst Math, A-8010 Graz, Austria
关键词
active set; augmented Lagrangian; primal-dual method; optimal control;
D O I
10.1137/S0363012997328609
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An algorithm for efficient solution of control constrained optimal control problems is proposed and analyzed. It is based on an active set strategy involving primal as well as dual variables. For discretized problems sufficient conditions for convergence in finitely many iterations are given. Numerical examples are given and the role of the strict complementarity condition is discussed.
引用
收藏
页码:1176 / 1194
页数:19
相关论文
共 10 条
[1]  
[Anonymous], 1977, ANN SCUOLA NORM SUP
[2]  
Barbu V, 1993, Mathematics in Science and Engineering, V190
[3]   Augmented Lagrangian techniques for elliptic state constrained optimal control problems [J].
Bergounioux, M ;
Kunisch, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (05) :1524-1543
[4]  
HEINKENSCHLOSS M, 1997, ANAL LAGRANGE SQP NE
[5]  
ITO K, 1995, LECT NOTES PURE APPL, V174, P107
[6]   APPROXIMATE QUASI-NEWTON METHODS [J].
KELLEY, CT ;
SACHS, EW .
MATHEMATICAL PROGRAMMING, 1990, 48 (01) :41-70
[7]   REDUCED SQP METHODS FOR PARAMETER-IDENTIFICATION PROBLEMS [J].
KUNISCH, K ;
SACHS, EW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (06) :1793-1820
[8]   An infinite-dimensional convergence theory for reduced SQP methods in Hilbert space [J].
Kupfer, FS .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (01) :126-163
[9]   THE ROLE OF THE PANCREAS IN VITAMIN-B12 ABSORPTION [J].
SCHILLING, RF .
AMERICAN JOURNAL OF HEMATOLOGY, 1983, 14 (02) :197-199
[10]  
TOLTZSCH F, 1994, CONTROL CYBERN, V23, P268