Non uniform multiresolution method for optical flow and phase portrait models: Environmental applications

被引:31
作者
Cohen, I [1 ]
Herlin, I
机构
[1] Univ So Calif, Inst Robot & Intelligent Syst, Los Angeles, CA 90089 USA
[2] Inst Natl Rech Informat & Automat, Projet AIR, F-78153 Le Chesnay, France
关键词
non uniform multiresolution; optical flow; non quadratic regularization; finite element method; adaptive mesh; phase portrait; flow pattern classification; ocean and atmospheric circulation;
D O I
10.1023/A:1008161130332
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we define a complete framework for processing large image sequences for a global monitoring of short range oceanographic and atmospheric processes. This framework is based on the use of a non quadratic regularization technique for optical flow computation that preserves flow discontinuities. We also show that using an appropriate tessellation of the image according to an estimate of the motion field can improve optical flow accuracy and yields more reliable flows. This method defines a non uniform multiresolution approach for coarse to fine grid generation. It allows to locally increase the resolution of the grid according to the studied problem. Each added node refines the grid in a region of interest and increases the numerical accuracy of the solution in this region. We make use of such a method for solving the optical flow equation with a non quadratic regularization scheme allowing the computation of optical flow field while preserving its discontinuities. The second part of the paper deals with the interpretation of the obtained displacement field. For this purpose a phase portrait model used along with a new formulation of the approximation of an oriented flow field allowing to consider arbitrary polynomial phase portrait models for characterizing salient flow features. This new framework is used for processing oceanographic and atmospheric image sequences and presents an alternative to complex physical modeling techniques.
引用
收藏
页码:29 / 49
页数:21
相关论文
共 35 条
[1]  
[Anonymous], 1989, The Design and Analysis of Spatial Data Structures
[2]   PERFORMANCE OF OPTICAL-FLOW TECHNIQUES [J].
BARRON, JL ;
FLEET, DJ ;
BEAUCHEMIN, SS .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1994, 12 (01) :43-77
[3]  
BERROIR JP, 1995, EOS SPIE SATELLITE R, V2
[4]  
Black M. J., 1994, Computer Vision - ECCV'94. Third European Conference on Computer Vision. Proceedings. Vol.I, P138
[5]  
Black M. J., 1991, Proceedings 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (91CH2983-5), P296, DOI 10.1109/CVPR.1991.139705
[6]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[7]   Tracking meteorological structures through curves matching using geodesic paths [J].
Cohen, I ;
Herlin, I .
SIXTH INTERNATIONAL CONFERENCE ON COMPUTER VISION, 1998, :396-401
[8]  
COHEN I, 1998, IEEE P COMP VIS PATT
[9]  
COHEN I, 1996, P 4 EUR C COMP VIS 1
[10]   IMAGE-MODELS FOR 2-D FLOW VISUALIZATION AND COMPRESSION [J].
FORD, RM ;
STRICKLAND, RN ;
THOMAS, BA .
CVGIP-GRAPHICAL MODELS AND IMAGE PROCESSING, 1994, 56 (01) :75-93