Estimation of an errors-in-variables regression model when the variances of the measurement errors vary between the observations

被引:39
作者
Kulathinal, SB
Kuulasmaa, K
Gasbarra, D
机构
[1] Natl Publ Hlth Inst, Dept Epidemiol & Hlth Promot, Helsinki 00300, Finland
[2] Univ Helsinki, Rolf Nevanlinna Inst, Helsinki 00014, Finland
关键词
bivariate normal distribution; EM algorithm; maximum likelihood estimation; measurement errors; MONICA; regression model;
D O I
10.1002/sim.1062
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is common in the analysis of aggregate data in epidemiology that the variances of the aggregate observations are available. The analysis of such data leads to a measurement error situation, where the known variances of the measurement errors vary between the observations. Assuming multivariate normal distribution for the 'true' observations and normal distributions for the measurement errors, we derive a simple EM algorithm for obtaining maximum likelihood estimates of the parameters of the multivariate normal distributions. The results also facilitate the estimation of regression parameters between the variables as well as the 'true' values of the observations. The approach is applied to re-estimate recent results of the WHO MONICA Project on cardiovascular disease and its risk factors, where the original estimation of the regression coefficients did not adjust for the regression attenuation caused by the measurement errors. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:1089 / 1101
页数:13
相关论文
共 9 条
[1]  
Dear KBG, 1997, STAT MED, V16, P2177
[2]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[3]  
Fuller W. A., 2009, Measurement error models
[4]  
Kshirsagar A. M., 1972, MULTIVARIATE ANAL
[5]   Estimation of contribution of changes in classic risk factors to trends in coronary-event rates across the WHO MONICA Project populations [J].
Kuulasmaa, K ;
Tunstall-Pedoe, H ;
Dobson, A ;
Fortmann, S ;
Sans, S ;
Tolonen, H ;
Evans, A ;
Ferrario, M ;
Tuomilehto, J .
LANCET, 2000, 355 (9205) :675-687
[6]  
Lehmann E. L., 1983, THEORY POINT ESTIMAT
[7]  
POCOCK SJ, 1981, APPL STATIST, V30, P286
[8]  
Walter SD, 1997, STAT MED, V16, P2883, DOI 10.1002/(SICI)1097-0258(19971230)16:24<2883::AID-SIM825>3.0.CO
[9]  
2-B