Molecular mechanics of calcium-myristoyl switches

被引:418
作者
Ames, JB
Ishima, R
Tanaka, T
Gordon, JI
Stryer, L
Ikura, M
机构
[1] STANFORD UNIV,SCH MED,DEPT NEUROBIOL,STANFORD,CA 94305
[2] UNIV TORONTO,ONTARIO CANC INST,DIV MOL & STRUCT BIOL,TORONTO,ON M5G 2M9,CANADA
[3] UNIV TORONTO,DEPT MED BIOPHYS,TORONTO,ON M5G 2M9,CANADA
[4] UNIV TSUKUBA,CTR TSUKUBA ADV RES ALLIANCE,TSUKUBA,IBARAKI 305,JAPAN
[5] UNIV TSUKUBA,INST APPL BIOCHEM,TSUKUBA,IBARAKI 305,JAPAN
[6] WASHINGTON UNIV,SCH MED,DEPT MOL BIOL & PHARMACOL,ST LOUIS,MO 63110
关键词
D O I
10.1038/38310
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many eukaryotic cellular and viral proteins have a covalently attached myristoyl group at the amino terminus. One such protein is recovering a calcium sensor in retinal rod cells, which controls the lifetime of photoexited rhodopsin by inhibiting rhodopsin kinase(1-6). Recoverin has a relative molecular mass of 23,000 (M-r 23K), and contains an amino-terminal myristoyl group (or related acyl group) and four EF hands(7). The binding of two Ca2+ ions to rccoverin leads to its translocation from the cytosol to the disc membraned(8,9). In the Ca2+-free state, the myristoyl group is sequestered in a deep hydrophobic box, where it is clamped by multiple residues contributed by three of the EF hands(10). We have used nuclear magnetic resonance to show that Ca2+ induces the unclamping and extrusion of the myristoyl group, enabling it to interact with a lipid bilayer membrane. The transition is also accompanied by a 45-degree rotation of the amino-terminal domain relative to the carboxy-terminal domain, and many hydrophobic residues are exposed. The conservation of the myristoyl binding site and two swivels in recoverin homologues from yeast to humans indicates that calcium-myristoyl switches are ancient devices for controlling calcium-sensitive processes.
引用
收藏
页码:198 / 202
页数:5
相关论文
共 29 条
[1]   SECONDARY STRUCTURE OF MYRISTOYLATED RECOVERIN DETERMINED BY 3-DIMENSIONAL HETERONUCLEAR NMR - IMPLICATIONS FOR THE CALCIUM MYRISTOYL SWITCH [J].
AMES, JB ;
TANAKA, T ;
STRYER, L ;
IKURA, M .
BIOCHEMISTRY, 1994, 33 (35) :10743-10753
[2]   AMINO-TERMINAL MYRISTOYLATION INDUCES COOPERATIVE CALCIUM-BINDING TO RECOVERIN [J].
AMES, JB ;
PORUMB, T ;
TANAKA, T ;
IKURA, M ;
STRYER, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (09) :4526-4533
[3]   Nuclear magnetic resonance evidence for Ca2+-induced extrusion of the myristoyl group of recoverin [J].
Ames, JB ;
Tanaka, T ;
Ikura, M ;
Stryer, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (52) :30909-30913
[4]   STRUCTURE OF CALMODULIN REFINED AT 2.2 A RESOLUTION [J].
BABU, YS ;
BUGG, CE ;
COOK, WJ .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 204 (01) :191-204
[5]   A FAST ALGORITHM FOR RENDERING SPACE-FILLING MOLECULE PICTURES [J].
BACON, D ;
ANDERSON, WF .
JOURNAL OF MOLECULAR GRAPHICS, 1988, 6 (04) :219-220
[6]  
BRUNGER AT, 1993, XPLOR VERSION 3 1 SY
[7]   CA2+-DEPENDENT INTERACTION OF RECOVERIN WITH RHODOPSIN KINASE [J].
CHEN, CK ;
INGLESE, J ;
LEFKOWITZ, RJ ;
HURLEY, JB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (30) :18060-18066
[8]   REGULATION OF RHODOPSIN PHOSPHORYLATION BY A FAMILY OF NEURONAL CALCIUM SENSORS [J].
DECASTRO, E ;
NEF, S ;
FIUMELLI, H ;
LENZ, SE ;
KAWAMURA, S ;
NEF, P .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1995, 216 (01) :133-140
[9]  
DIZHOOR AM, 1992, J BIOL CHEM, V267, P16033
[10]   ROLE OF THE ACYLATED AMINO TERMINUS OF RECOVERIN IN CA2+-DEPENDENT MEMBRANE INTERACTION [J].
DIZHOOR, AM ;
CHEN, CK ;
OLSHEVSKAYA, E ;
SINELNIKOVA, VV ;
PHILLIPOV, P ;
HURLEY, JB .
SCIENCE, 1993, 259 (5096) :829-832