Distinct distances in three and higher dimensions

被引:11
作者
Aronov, B [1 ]
Pach, J
Sharir, M
Tardos, G
机构
[1] Polytech Univ, Dept Comp & Informat Sci, Brooklyn, NY 11201 USA
[2] CUNY City Coll, New York, NY 10012 USA
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[4] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
[5] Hungarian Acad Sci, Renyi Inst, H-1354 Budapest, Hungary
关键词
D O I
10.1017/S0963548304006091
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Improving an old result of Clarkson, Edelsbrunner, Guibas, Sharir and Welzl, we show that the number of distinct distances determined by a set P of n points in three-dimensional space is Omega(n(77/141-epsilon)) = Omega(n(0.546)), for any epsilon > 0. Moreover, there always exists a point p is an element of P from which there are at least so many distinct distances to the remaining elements of P. The same result holds for points on the three-dimensional sphere. As a consequence, we obtain analogous results in higher dimensions.
引用
收藏
页码:283 / 293
页数:11
相关论文
共 19 条
  • [1] ARONOV B, 2002, IN PRESS DISCRETE CO
  • [2] A DETERMINISTIC VIEW OF RANDOM SAMPLING AND ITS USE IN GEOMETRY
    CHAZELLE, B
    FRIEDMAN, J
    [J]. COMBINATORICA, 1990, 10 (03) : 229 - 249
  • [3] THE NUMBER OF DIFFERENT DISTANCES DETERMINED BY A SET OF POINTS IN THE EUCLIDEAN PLANE
    CHUNG, FRK
    SZEMEREDI, E
    TROTTER, WT
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 7 (01) : 1 - 11
  • [4] COMBINATORIAL COMPLEXITY-BOUNDS FOR ARRANGEMENTS OF CURVES AND SPHERES
    CLARKSON, KL
    EDELSBRUNNER, H
    GUIBAS, LJ
    SHARIR, M
    WELZL, E
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (02) : 99 - 160
  • [5] Elekes G, 2002, BOLYAI SOC MATH STUD, V11, P241
  • [6] Elekes Gy., 1999, Period. Math. Hung, V38, P173
  • [7] Erd??s P., 1946, AM MATH MONTHLY, V53, P248, DOI [10.1080/00029890.1946.11991674, DOI 10.1080/00029890.1946.11991674]
  • [8] Erdos P, 1996, BOLYAI MATH STUD, V2, P97
  • [9] KATZ N, 2004, IN PRESS CONT MATH A
  • [10] KATZ NH, UNPUB COMBINATORICA