Recovering lost excitons in organic photovoltaics using a transparent dissociation layer

被引:29
作者
Barito, A. [1 ]
Sykes, M. E. [1 ]
Bilby, D. [1 ]
Amonoo, J. [1 ]
Jin, Y. [1 ]
Morris, S. E. [1 ]
Green, P. F. [1 ]
Kim, J. [1 ]
Shtein, M. [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
BORON SUBPHTHALOCYANINE CHLORIDE; ENERGY; CELLS; PHOTOLUMINESCENCE; EFFICIENCY; ACCEPTOR; VOLTAGE;
D O I
10.1063/1.4807416
中图分类号
O59 [应用物理学];
学科分类号
摘要
In organic photovoltaic (OPV) cells, photocurrent generation relies on exciton diffusion to the donor/acceptor heterojunction. Excitons that fail to reach the heterojunction are lost to recombination via quenching at the electrodes or relaxation in the bulk. Bulk recombination has been mitigated largely through the use of bulk heterojunctions, while quenching at the metal cathode has been previously circumvented through the introduction of exciton blocking layers that "reflect" excitons. Here, we investigate an alternative concept of a transparent exciton dissociation layer (EDL), a single layer that prevents exciton quenching at the electrode while also providing an additional interface for exciton dissociation. The additional heterojunction reduces the distance excitons must travel to dissociate, recovering the electricity-generating potential of excitons otherwise lost to heat. We model and experimentally demonstrate this concept in an archetypal subphthalocyanine/fullerene planar heterojunction OPV, generating an extra 66% of photocurrent in the donor layer (resulting in a 27% increase in short-circuit current density from 3.94 to 4.90 mA/cm(2)). Because the EDL relaxes the trade-off between exciton diffusion and optical absorption efficiencies in the active layers, it has broad implications for the design of OPV architectures and offers additional benefits over the previously demonstrated exciton blocking layer for photocurrent generation. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 41 条
[1]  
[Anonymous], 1940, CHEM ED, DOI DOI 10.1021/ED018P249.1
[2]   Boron Subphthalocyanine Chloride as an Electron Acceptor for High-Voltage Fullerene-Free Organic Photovoltaics [J].
Beaumont, Nicola ;
Cho, Sang Wan ;
Sullivan, Paul ;
Newby, David ;
Smith, Kevin E. ;
Jones, Tim S. .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (03) :561-566
[3]   TIME-RESOLVED PHOTOLUMINESCENCE OF SOLID-STATE FULLERENES [J].
BYRNE, HJ ;
MASER, W ;
RUHLE, WW ;
MITTELBACH, A ;
HONLE, W ;
VONSCHNERING, HG ;
MOVAGHAR, B ;
ROTH, S .
CHEMICAL PHYSICS LETTERS, 1993, 204 (5-6) :461-466
[4]   Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers [J].
Centurioni, E .
APPLIED OPTICS, 2005, 44 (35) :7532-7539
[5]   Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices [J].
Chan, M. Y. ;
Lai, S. L. ;
Lau, K. M. ;
Lee, C. S. ;
Lee, S. T. .
APPLIED PHYSICS LETTERS, 2006, 89 (16)
[6]   Enhanced photocurrent and open-circuit voltage in a 3-layer cascade organic solar cell [J].
Cnops, Kjell ;
Rand, Barry P. ;
Cheyns, David ;
Heremans, Paul .
APPLIED PHYSICS LETTERS, 2012, 101 (14)
[7]  
DIJKEN AV, 2003, ORG ELECTRON, V4, P131
[8]  
Dresselhaus M. S., 1996, SCI FULLERENES CARBO, P484
[9]   Highly efficient p-i-n type organic photovoltaic devices [J].
Gebeyehu, D ;
Pfeiffer, M ;
Maennig, B ;
Drechsel, J ;
Werner, A ;
Leo, K .
THIN SOLID FILMS, 2004, 451 :29-32
[10]   MEROCYANINE ORGANIC SOLAR-CELLS [J].
GHOSH, AK ;
FENG, T .
JOURNAL OF APPLIED PHYSICS, 1978, 49 (12) :5982-5989