Manganese hexacyanoferrate/MnO2 composite nanostructures as a cathode material for supercapacitors

被引:90
作者
Wang, Yu [1 ]
Zhong, Hao
Hu, Lin
Yan, Nan
Hu, Haibo
Chen, Qianwang
机构
[1] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Peoples R China
关键词
CHARGE STORAGE MECHANISM; ELECTROCHEMICAL CAPACITORS; ANODE MATERIAL; PRUSSIAN BLUE; ION BATTERIES; ELECTROLYTE; DIOXIDE; PERFORMANCE; ADSORPTION; REDOX;
D O I
10.1039/c2ta01354a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A composite of manganese hexacyanoferrate (MnHCF) coated by an amorphous manganese dioxide layer was synthesized by a facile co-precipitation method and a further step called "deep electro-oxidation". The structure and components of the resulting MnHCF/MnO2 composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Electrochemical testing showed a capacitance of 225.6 F g(-1) at a sweep rate of 5 mV s(-1) within a voltage range of 1.3 V and a high energy density of 74.5 W h kg(-1) at a current density of 0.5 A g(-1) during galvanostatic charge/discharge cycles, which is superior to most cathode materials, including some reported graphene/MnO2 nanocomposites. It is confirmed that the two components, manganese hexacyanoferrate and manganese dioxide, lead to an integrated electrochemical behavior and a capacitor with enhanced performance. The electrochemical testing and corresponding XPS analysis also demonstrated that the manganese coordinated by cyanide groups via nitrogen atoms in MnHCF did not get involved in the charge storage process during potential cycles.
引用
收藏
页码:2621 / 2630
页数:10
相关论文
共 35 条
[1]   Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors [J].
Bao, Shu-Juan ;
Li, Chang Ming ;
Guo, Chun-Xian ;
Qiao, Yan .
JOURNAL OF POWER SOURCES, 2008, 180 (01) :676-681
[2]   Investigation of thin sputtered Mn films for electrochemical capacitors [J].
Broughton, JN ;
Brett, MJ .
ELECTROCHIMICA ACTA, 2004, 49 (25) :4439-4446
[3]   A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte [J].
Brousse, T ;
Toupin, M ;
Bélanger, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (04) :A614-A622
[4]   Electrochemical supercapacitor behavior of Ni3(Fe(CN)6)2(H2O) nanoparticles [J].
Chen, Jie ;
Huang, Kelong ;
Liu, Suqin ;
Hu, Xi .
JOURNAL OF POWER SOURCES, 2009, 186 (02) :565-569
[5]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[6]   Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism [J].
Chigane, M ;
Ishikawa, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (06) :2246-2251
[7]   Metal hexacyanoferrates: Electrosynthesis, in situ characterization, and applications [J].
de Tacconi, NR ;
Rajeshwar, K ;
Lezna, RO .
CHEMISTRY OF MATERIALS, 2003, 15 (16) :3046-3062
[8]   A novel polymer electrolyte based on oligo(ethylene glycol) 600, K2PdCl4, and K3Fe(CN)(6) [J].
DiNoto, V .
JOURNAL OF MATERIALS RESEARCH, 1997, 12 (12) :3393-3403
[9]   Mixed-valence Li/Fe-based metal-organic frameworks with both reversible redox and sorption properties [J].
Ferey, Gerard ;
Millange, Franck ;
Morcrette, Mathieu ;
Serre, Christian ;
Doublet, Marie-Liesse ;
Greneche, Jean-Marc ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (18) :3259-3263
[10]   Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds [J].
Grosvenor, AP ;
Kobe, BA ;
Biesinger, MC ;
McIntyre, NS .
SURFACE AND INTERFACE ANALYSIS, 2004, 36 (12) :1564-1574