Remote Sensing Based Yield Estimation in a Stochastic Framework - Case Study of Durum Wheat in Tunisia

被引:55
作者
Meroni, Michele [1 ]
Marinho, Eduardo [1 ]
Sghaier, Nabil [2 ]
Verstrate, Michel M. [1 ]
Leo, Olivier [1 ]
机构
[1] Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, I-21027 Ispra, VA, Italy
[2] Natl Ctr Cartog & Remote Sensing CNCT, Tunis, Tunisia
来源
REMOTE SENSING | 2013年 / 5卷 / 02期
关键词
optical remote sensing; multitemporal observations; yield; statistical models; SPOT-VGT; LEAF-AREA; MODELS; INDEX; TESTS; NDVI;
D O I
10.3390/rs5020539
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Multitemporal optical remote sensing constitutes a useful, cost efficient method for crop status monitoring over large areas. Modelers interested in yield monitoring can rely on past and recent observations of crop reflectance to estimate aboveground biomass and infer the likely yield. Therefore, in a framework constrained by information availability, remote sensing data to yield conversion parameters are to be estimated. Statistical models are suitable for this purpose, given their ability to deal with statistical errors. This paper explores the performance in yield estimation of various remote sensing indicators based on varying degrees of bio-physical insight, in interaction with statistical methods (linear regressions) that rely on different hypotheses. Performances in estimating the temporal and spatial variability of yield, and implications of data scarcity in both dimensions are investigated. Jackknifed results (leave one year out) are presented for the case of wheat yield regional estimation in Tunisia using the SPOT-VEGETATION instrument. Best performances, up to 0.8 of R-2, are achieved using the most physiologically sound remote sensing indicator, in conjunction with statistical specifications allowing for parsimonious spatial adjustment of the parameters.
引用
收藏
页码:539 / 557
页数:19
相关论文
共 30 条
[1]  
[Anonymous], 2010, INV FOR TEL RES 2 IN
[2]  
[Anonymous], P 3 RAQRS WORKSH VAL
[3]  
Atzberger C., 2012, REMOTE SENS UNPUB
[4]   Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco [J].
Balaghi, Riad ;
Tychon, Bernard ;
Eerens, Herman ;
Jlibene, Mohammed .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2008, 10 (04) :438-452
[5]  
Baltagi B.H., 2005, Econometric Analysis of Panel Data, V3rd, P11
[6]   LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION -: Part 1:: Principles of the algorithm [J].
Baret, Frederic ;
Hagolle, Olivier ;
Geiger, Bernhard ;
Bicheron, Patrice ;
Miras, Bastien ;
Huc, Mireille ;
Berthelot, Beatrice ;
Nino, Fernando ;
Weiss, Marie ;
Samain, Olivier ;
Roujean, Jean Louis ;
Leroy, Marc .
REMOTE SENSING OF ENVIRONMENT, 2007, 110 (03) :275-286
[7]   Monitoring Biennial Bearing Effect on Coffee Yield Using MODIS Remote Sensing Imagery [J].
Bernardes, Tiago ;
Moreira, Mauricio Alves ;
Adami, Marcos ;
Giarolla, Angelica ;
Theodor Rudorff, Bernardo Friedrich .
REMOTE SENSING, 2012, 4 (09) :2492-2509
[8]   REMOTE-SENSING AND CROP PRODUCTION MODELS - PRESENT TRENDS [J].
DELECOLLE, R ;
MAAS, SJ ;
GUERIF, M ;
BARET, F .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 1992, 47 (2-3) :145-161
[9]   A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling [J].
Dorigo, W. A. ;
Zurita-Milla, R. ;
de Wit, A. J. W. ;
Brazile, J. ;
Singh, R. ;
Schaepman, M. E. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2007, 9 (02) :165-193
[10]  
Duveiller G., 2012, REMOTE SENS UNPUB