The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer

被引:95
作者
Minshall, N [1 ]
Standart, N [1 ]
机构
[1] Univ Cambridge, Dept Biochem, Cambridge CB2 1GA, England
基金
英国惠康基金;
关键词
D O I
10.1093/nar/gkh303
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Previously, we reported that in clam oocytes, cytoplasmic polyadenylation element-binding protein (CPEB) co-immunoprecipitates with p47, a member of the highly conserved RCK family of RNA helicases which includes Drosophila Me31B and Saccharomyces cerevisiae Dhh1. Xp54, the Xenopus homologue, with helicase activity, is a component of stored mRNP. In tethered function assays in Xenopus oocytes, we showed that MS2-Xp54 represses the translation of non-adenylated firefly luciferase mRNAs and that mutations in two core helicase motifs, DEAD and HRIGR, surprisingly, activated translation. Here we show that wild-type MS2-Xp54 tethered to the reporter mRNA 3'-untranslated region (UTR) represses translation in both oocytes and eggs in an RNA-dependent complex with endogenous Xp54. Injection of mutant helicases or adenylated reporter mRNA abrogates this association. Thus Xp54 oligomerization is a hallmark of translational repression. Xp54 complexes, which also contain CPEB and eIF4E in oocytes, change during meiotic maturation. In eggs, CPEB is degraded and, while eIF4E still interacts with Xp54, this interaction becomes RNA dependent. Supporting evidence for RNA-mediated oligomerization of endogenous Xp54, and RNA-independent association with CPEB and eIF4E in oocytes was obtained by gel filtration. Altogether, our data are consistent with a model in which the active form of the Xp54 RNA helicase is an oligomer in vivo which, when tethered, via either MS2 or CPEB to the 3'UTR, represses mRNA translation, possibly by sequestering eIF4E from the translational machinery.
引用
收藏
页码:1325 / 1334
页数:10
相关论文
共 59 条
[1]   Postfertilization deadenylation of mRNAs in Xenopus laevis embryos is sufficient to cause their degradation at the blastula stage [J].
Audic, Y ;
Omilli, F ;
Osborne, HB .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (01) :209-218
[2]   Characterization of the zebrafish Orb/CPEB-related RNA-binding protein and localization of maternal components in the zebrafish oocyte [J].
Bally-Cuif, L ;
Schatz, WJ ;
Ho, RK .
MECHANISMS OF DEVELOPMENT, 1998, 77 (01) :31-47
[3]   Dissolution of the maskin-eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation [J].
Cao, QP ;
Richter, JD .
EMBO JOURNAL, 2002, 21 (14) :3852-3862
[4]   Crystal structure of RNA helicase from genotype 1b hepatitis C virus - A feasible mechanism of unwinding duplex RNA [J].
Cho, HS ;
Ha, NC ;
Kang, LW ;
Chung, KM ;
Back, SH ;
Jang, SK ;
Oh, BH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (24) :15045-15052
[5]   Tethered function assays using 3′ untranslated regions [J].
Coller, J ;
Wickens, M .
METHODS, 2002, 26 (02) :142-150
[6]   The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes [J].
Coller, JM ;
Tucker, M ;
Sheth, U ;
Valencia-Sanchez, MA ;
Parker, R .
RNA, 2001, 7 (12) :1717-1727
[7]   A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans [J].
Crittenden, SL ;
Bernstein, DS ;
Bachorik, JL ;
Thompson, BE ;
Gallegos, M ;
Petcherski, AG ;
Moulder, G ;
Barstead, R ;
Wickens, M ;
Kimble, J .
NATURE, 2002, 417 (6889) :660-663
[8]   Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA [J].
de Moor, CH ;
Richter, JD .
EMBO JOURNAL, 1999, 18 (08) :2294-2303
[9]   Poly(A) polymerase and the regulation of cytoplasmic polyadenylation [J].
Dickson, KS ;
Thompson, SR ;
Gray, NK ;
Wickens, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (45) :41810-41816
[10]   The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1 [J].
Fischer, N ;
Weis, K .
EMBO JOURNAL, 2002, 21 (11) :2788-2797