Surface analysis of LiMn2O4 electrodes in carbonate-based electrolytes

被引:194
作者
Eriksson, T [1 ]
Andersson, AM
Bishop, AG
Gejke, C
Gustafsson, T
Thomas, JO
机构
[1] Uppsala Univ, Angstrom Lab, Dept Chem Mat, SE-75121 Uppsala, Sweden
[2] Chalmers Univ Technol, Dept Appl Phys, SE-41296 Gothenburg, Sweden
关键词
D O I
10.1149/1.1426398
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The interface chemistry of LixMn2O4 electrodes in carbonate-based electrolytes has been investigated using X-ray photoelectron spectroscopy, infrared spectroscopy, Raman spectroscopy, and scanning electron microscopy following cycling or storage in (LiMn2O4 ethylene carbonate/dimethyl carbonate LiPF6/LiBF4\Li] cells. No significant changes were found in the elemental composition of surface films formed on cycled and stored samples, suggesting that surface-film formation is not governed by processes associated with cell cycling. The amount of surface species increases with storage time and cycle number at ambient temperature, where LiF, LixPFyOz products and some polyether-type polymeric compound could be identified as reaction products on the cathode surface. A lithium-rich manganese oxide layer develops on the surface of the cathode particles under continued storage and cycling. The thickness of the surface layer decreases rather than increases with storage at a higher state-of-charge. More carbon compounds are preserved on the electrode surface using LiBF4 rather than LiPF6 as electrolyte salt. (C) 2001 The Electrochemical Society.
引用
收藏
页码:A69 / A78
页数:10
相关论文
共 36 条
[1]  
ALPERT NL, 1978, IR THEORY PRACTICE I
[2]   Chemical composition and morphology of the elevated temperature SEI on graphite [J].
Andersson, AM ;
Edström, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :A1100-A1109
[3]   On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J].
Aurbach, D ;
Markovsky, B ;
Weissman, I ;
Levi, E ;
Ein-Eli, Y .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :67-86
[4]   A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate dimethyl carbonate mixtures [J].
Aurbach, D ;
Markovsky, B ;
Shechter, A ;
EinEli, Y ;
Cohen, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (12) :3809-3820
[5]   The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M = Ni, Mn) [J].
Aurbach, D ;
Gamolsky, K ;
Markovsky, B ;
Salitra, G ;
Gofer, Y ;
Heider, U ;
Oesten, R ;
Schmidt, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1322-1331
[6]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[7]   Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides [J].
Aurbach, D ;
Levi, MD ;
Levi, E ;
Teller, H ;
Markovsky, B ;
Salitra, G ;
Heider, U ;
Heider, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) :3024-3034
[8]   X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy [J].
Aurbach, D ;
Weissman, I ;
Schechter, A ;
Cohen, H .
LANGMUIR, 1996, 12 (16) :3991-4007
[9]  
AURBACH D, 1999, NONAQUEOUS ELECTROCH, pCH6
[10]  
AURBACH D, 1998, LITHIUM BATTERIES, P173