Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials

被引:39
作者
Aizawa, H
Katsumata, T
Komuro, S
Morikawa, T
Ishizawa, H
Toba, E
机构
[1] Toyo Univ, Fac Engn, Sensor Photon Res Ctr, Kawagoe, Saitama 3508585, Japan
[2] Shinshu Univ, Fac Text Sci & Technol, Nagano 3868567, Japan
关键词
fiber-optic thermometer; Tb doped YAG; Stark effect; PL intensity ratio; high temperature measurement;
D O I
10.1016/j.sna.2005.09.021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Terbium ion (Tb3+) doped silica glass (Tb:SiO2) and yttrium aluminum garnet crystals (Tb:YAG) have been fabricated for the applications in fiber-optic thermometers based on the temperature dependence of the photoluminescence (PL) spectrum. Several PL peaks at 490, 540, 585, 625 nm were observed from both Tb doped phosphors. In Tb:YAG crystal, the PL peaks were split into two or three small peaks due to the Stark effect. Temperature dependence of PL spectra from Tb:SiO2 glass and Tb:YAG crystal was evaluated over a temperature range from 300 to 1200 K. In the Tb:SiO2 glass, the peak PL intensity varied greatly with temperature. The shape of the PL spectrum from Tb:YAG crystal varied with temperature because the resolution of the split in the peak PL decreased with temperature. The intensity ratio between splitting PL peaks, therefore, varied with temperature. From these results, Tb:SiO2 glass and Tb:YAG crystals are considered to be a useful sensor head materials for high temperature measurement using temperature dependence of PL intensity. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 82
页数:5
相关论文
共 16 条
[1]   Fibre-optic thermometer using sensor materials with long fluorescence lifetime [J].
Aizawa, H ;
Uchiyama, H ;
Katsumata, T ;
Komuro, S ;
Morikawa, T ;
Ishizawa, H ;
Toba, E .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2004, 15 (08) :1484-1489
[2]   Long afterglow phosphorescent sensor materials for fiber-optic thermometer [J].
Aizawa, H ;
Katsumata, T ;
Takahashi, J ;
Matsunaga, K ;
Komuro, S ;
Morikawa, T ;
Toba, E .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (03) :1344-1349
[3]   Fiber-optic thermometer using afterglow phosphorescence from long duration phosphor [J].
Aizawa, H ;
Katsumata, T ;
Takahashi, J ;
Matsunaga, K ;
Komuro, S ;
Morikawa, T ;
Toba, E .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (09) :H17-H19
[4]   Characteristics of sapphire fiber connected with ruby sensor head for the fiber-optic thermometer applications [J].
Aizawa, H ;
Ohishi, N ;
Ogawa, S ;
Endo, A ;
Hakamada, A ;
Katsumata, T ;
Komuro, S ;
Morikawa, T ;
Toba, E .
SENSORS AND ACTUATORS A-PHYSICAL, 2002, 101 (1-2) :42-48
[5]   Fabrication of ruby sensor probe for the fiber-optic thermometer using fluorescence decay [J].
Aizawa, H ;
Ohishi, N ;
Ogawa, S ;
Katsumata, T ;
Komuro, S ;
Morikawa, T ;
Toba, E .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (10) :3656-3658
[6]   Characteristics of chromium doped spinel crystals for a fiber-optic thermometer application [J].
Aizawa, H ;
Ohishi, N ;
Ogawa, S ;
Watanabe, E ;
Katsumata, T ;
Komuro, S ;
Morikawa, T ;
Toba, E .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (08) :3089-3092
[7]   DISTRIBUTED TEMPERATURE SENSOR USING ND-3+-DOPED OPTICAL FIBER [J].
FARRIES, MC ;
FERMANN, ME ;
LAMING, RI ;
POOLE, SB ;
PAYNE, DN .
ELECTRONICS LETTERS, 1986, 22 (08) :418-419
[8]   TEMPERATURE DEPENDENCES OF CR+3 RADIATIVE AND NONRADIATIVE-TRANSITIONS IN RUBY AND EMERALD [J].
FONGER, WH ;
STRUCK, CW .
PHYSICAL REVIEW B, 1975, 11 (09) :3251-3260
[9]  
GRATTAN KTV, 1995, FIBER OPTIC FLUORESC, P83
[10]  
IMAI Y, 1996, P OFS, V11, P268