Homoclinic orbits to parabolic points

被引:10
作者
Casasayas, Josefina [1 ]
Fontich, Ernest [1 ]
Nunes, Ana [2 ]
机构
[1] Univ Barcelona, Dept Matemat Aplicada & Anal, E-08007 Barcelona, Spain
[2] Univ Lisbon, Dept Fis, P-1700 Lisbon, Portugal
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 1997年 / 4卷 / 02期
关键词
Periodic Orbit; Homoclinic Orbit; Parabolic Type; Parabolic Point; Half Degree;
D O I
10.1007/PL00001416
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a proof of the Poincare-Melnikov method in the case of non-Hamiltonian perturbations of one and a half degrees of freedom Hamiltonians, having orbits homoclinic to degenerate periodic orbits of parabolic type.
引用
收藏
页码:201 / 216
页数:16
相关论文
共 11 条
[1]   INVARIANT-MANIFOLDS FOR A CLASS OF PARABOLIC POINTS [J].
CASASAYAS, J ;
FONTICH, E ;
NUNES, A .
NONLINEARITY, 1992, 5 (05) :1193-1210
[2]  
CASASAYAS J., 1993, HAMILTONIAN SYSTEMS, P35
[3]   PARABOLIC ORBITS IN THE PLANAR 3 BODY PROBLEM [J].
EASTON, RW .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 52 (01) :116-134
[4]  
FONTICH E., 1994, PREPRINT
[5]  
Guckenheimer J., 1990, NONLINEAR OSCILLATIO
[6]   PARABOLIC ORBITS IN THE ELLIPTIC RESTRICTED 3 BODY PROBLEM [J].
MARTINEZ, R ;
PINYOL, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 111 (02) :299-339
[7]   STABLE MANIFOLD THEOREM FOR DEGENERATE FIXED-POINTS WITH APPLICATIONS TO CELESTIAL MECHANICS [J].
MCGEHEE, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1973, 14 (01) :70-88
[8]   HOMOCLINIC ORBITS AND OSCILLATION FOR THE PLANAR 3-BODY PROBLEM [J].
ROBINSON, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 52 (03) :356-377
[9]   MELNIKOV METHOD AND AVERAGING [J].
SANDERS, JA .
CELESTIAL MECHANICS, 1982, 28 (1-2) :171-181
[10]  
Wiggins S, 1990, INTRO APPL NONLINEAR, P194