Robustness of decoherence-free subspaces for quantum computation

被引:113
作者
Bacon, D [1 ]
Lidar, DA
Whaley, KB
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
来源
PHYSICAL REVIEW A | 1999年 / 60卷 / 03期
关键词
D O I
10.1103/PhysRevA.60.1944
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It was shown recently [D. A. Lidar et al., Phys. Rev. Lett. 81, 2594 (1998)] that within the framework of the semigroup Markovian master equation, decoherence-free (DF) subspaces exist which are stable to first order in time to a perturbation. Here this result is extended to the non-Markovian regime and generalized. In particular, it is shown that within both the semigroup and the non-Markovian operator sum representation, DF subspaces are stable to all orders in time to a symmetry-breaking perturbation. DF subspaces are thus ideal for quantum memory applications. For quantum computation, however, the stability result does not extend beyond the first order. Thus, to perform robust quantum computation in DF subspaces, they must be supplemented with quantum error correcting codes. [S1050-2947(99)03309-0].
引用
收藏
页码:1944 / 1955
页数:12
相关论文
共 44 条
  • [1] AHARONOV D, QUANTPH9611025 LANL
  • [2] Alicki R., 2007, Volume 717 of Lecture Notes in Physics, V717
  • [3] [Anonymous], P 29 ANN ACM S THEOR
  • [4] QUANTUM-DYNAMIC SEMIGROUP GENERATORS FOR PROTON-SPIN RELAXATION IN WATER
    BECK, P
    LENDI, K
    [J]. PHYSICAL REVIEW A, 1993, 47 (01): : 346 - 360
  • [5] Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
  • [6] Quantum information theory
    Bennett, CH
    Shor, PW
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (06) : 2724 - 2742
  • [7] Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609
  • [8] Creation of a persistent quantum bit using error correction
    Chuang, IL
    Yamamoto, Y
    [J]. PHYSICAL REVIEW A, 1997, 55 (01): : 114 - 127
  • [9] CHUANG IL, QUANTPH9704030 LANL
  • [10] MARKOVIAN MASTER EQUATIONS
    DAVIES, EB
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 39 (02) : 91 - 110