The N terminus of the Escherichia coli transcription activator Ma1T is the domain of interaction with Ma1Y

被引:34
作者
Schlegel, A
Danot, O
Richet, E
Ferenci, T
Boos, W [1 ]
机构
[1] Univ Konstanz, Dept Biol, D-78457 Constance, Germany
[2] Inst Pasteur, Unite Genet Mol, FRE CNRS 2364, F-75724 Paris 15, France
[3] Univ Sydney, Dept Microbiol, Sydney, NSW 2006, Australia
关键词
D O I
10.1128/JB.184.11.3069-3077.2002
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The maltose system of Escherichia coli consists of a number of genes encoding proteins involved in the uptake and metabolism of maltose and maltodextrins. The system is positively regulated by MalT, its transcriptional activator. MalT activity is controlled by two regulatory circuits: a positive one with maltotriose as effector and a negative one involving several proteins. MalK, the ATP-hydrolyzing subunit of the cognate ABC transporter, MalY, an enzyme with the activity of a cystathionase, and Aes, an acetyl esterase, phenotypically act as repressors of MalT activity. By in vivo titration assays, we have shown that the N-terminal 250 amino acids of MalT contain the interaction site for MalY but not for MalK. This was confirmed by gel filtration analysis, where MalY was shown to coelute with the N-terminal MalT structural domain. Mutants in MalT causing elevated mal gene expression in the absence of exogenous maltodextrins were tested in their response to the three repressors. The different MalT mutations exhibited a various degree of sensitivity towards these repressors, but none was resistant to all of them. Some of them became nearly completely resistant to Aes while still being sensitive to MalY. These mutations are located at positions 38, 220, 243, and 359, most likely defining the interaction patch with Aes on the three-dimensional structure of MalT.
引用
收藏
页码:3069 / 3077
页数:9
相关论文
共 45 条
[1]  
[Anonymous], 1988, Antibodies: A Laboratory Manual
[2]   Structural model of Ma1K, the ABC subunit of the maltose transporter of Escherichia coli -: Implications for mal gene regulation, inducer exclusion, and subunit assembly [J].
Böhm, A ;
Diez, J ;
Diederichs, K ;
Welte, W ;
Boos, W .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (05) :3708-3717
[3]   CONSTRUCTION AND CHARACTERIZATION OF NEW CLONING VEHICLES .2. MULTIPURPOSE CLONING SYSTEM [J].
BOLIVAR, F ;
RODRIGUEZ, RL ;
GREENE, PJ ;
BETLACH, MC ;
HEYNEKER, HL ;
BOYER, HW ;
CROSA, JH ;
FALKOW, S .
GENE, 1977, 2 (02) :95-113
[4]   Learning new tricks from an old dog -: MaIT of the Escherichia coli maltose system is part of a complex regulatory network [J].
Boos, W ;
Böhm, A .
TRENDS IN GENETICS, 2000, 16 (09) :404-409
[5]   Maltose/maltodextrin system of Escherichia coli:: Transport, metabolism, and regulation [J].
Boos, W ;
Shuman, H .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (01) :204-+
[6]   TRANSPOSABLE-LAMBDA PLACMU BACTERIOPHAGES FOR CREATING LACZ OPERON FUSIONS AND KANAMYCIN RESISTANCE INSERTIONS IN ESCHERICHIA-COLI [J].
BREMER, E ;
SILHAVY, TJ ;
WEINSTOCK, GM .
JOURNAL OF BACTERIOLOGY, 1985, 162 (03) :1092-1099
[7]   OSMOREGULATION OF THE MALTOSE REGULON IN ESCHERICHIA-COLI [J].
BUKAU, B ;
EHRMANN, M ;
BOOS, W .
JOURNAL OF BACTERIOLOGY, 1986, 166 (03) :884-891
[8]   TRANSPOSITION AND FUSION OF LAC GENES TO SELECTED PROMOTERS IN ESCHERICHIA-COLI USING BACTERIOPHAGE-LAMBDA AND BACTERIOPHAGE-MU [J].
CASADABAN, MJ .
JOURNAL OF MOLECULAR BIOLOGY, 1976, 104 (03) :541-555
[9]   CONSTRUCTION AND CHARACTERIZATION OF AMPLIFIABLE MULTICOPY DNA CLONING VEHICLES DERIVED FROM P15A CRYPTIC MINIPLASMID [J].
CHANG, ACY ;
COHEN, SN .
JOURNAL OF BACTERIOLOGY, 1978, 134 (03) :1141-1156
[10]   ONE-STEP PREPARATION OF COMPETENT ESCHERICHIA-COLI - TRANSFORMATION AND STORAGE OF BACTERIAL-CELLS IN THE SAME SOLUTION [J].
CHUNG, CT ;
NIEMELA, SL ;
MILLER, RH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (07) :2172-2175