Monomeric Cu,Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic lateral sclerosis

被引:266
作者
Rakhit, R
Crow, JP
Lepock, JR
Kondejewski, LH
Cashman, NR
Chakrabartty, A [1 ]
机构
[1] Univ Toronto, Dept Med Biophys, Toronto, ON M5G 2M9, Canada
[2] Univ Toronto, Dept Biochem, Toronto, ON M5G 2M9, Canada
[3] Univ Arkansas Med Sci, Coll Med, Dept Pharmacol & Toxicol, Little Rock, AR 72205 USA
[4] Caprion Pharmaceut Inc, St Laurent, PQ H4S 2C8, Canada
[5] Univ Toronto, Ctr Res Neurodegenerat Dis, Toronto, ON M5S 3H2, Canada
[6] Univ Toronto, Sunnybrook & Womens Coll Hosp, Toronto, ON M5S 3H2, Canada
关键词
D O I
10.1074/jbc.M313295200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proteinacious intracellular aggregates in motor neurons are a key feature of both sporadic and familial amyotrophic lateral sclerosis (ALS). These inclusion bodies are often immunoreactive for Cu, Zn-superoxide dismutase (SOD1) and are implicated in the pathology of ALS. On the basis of this and a similar clinical presentation of symptoms in the familial (fALS) and sporadic forms of ALS, we sought to investigate the possibility that there exists a common disease-related aggregation pathway for fALS-associated mutant SODs and wild type SOD1. We have previously shown that oxidation of fALS-associated mutant SODs produces aggregates that have the same morphological, structural, and tinctorial features as those found in SOD1 inclusion bodies in ALS. Here, we show that oxidative damage of wild type SOD at physiological concentrations (similar to 40 muM) results in destabilization and aggregation in vitro. Oxidation of either mutant or wild type SOD1 causes the enzyme to dissociate to monomers prior to aggregation. Only small changes in secondary and tertiary structure are associated with monomer formation. These results indicate a common aggregation prone monomeric intermediate for wild type and fALS-associated mutant SODs and provides a link between sporadic and familial ALS.
引用
收藏
页码:15499 / 15504
页数:6
相关论文
共 40 条
[1]  
Andrus PK, 1998, J NEUROCHEM, V71, P2041
[2]   Solution structure of reduced monomeric Q133M2 copper, zinc superoxide dismutase (SOD). Why is SOD a dimeric enzyme? [J].
Banci, L ;
Benedetto, M ;
Bertini, I ;
Del Conte, R ;
Piccioli, M ;
Viezzoli, MS .
BIOCHEMISTRY, 1998, 37 (34) :11780-11791
[3]   Role of the dimeric structure in Cu,Zn superoxide dismutase -: pH-dependent, reversible denaturation of the monomeric enzyme from Escherichia coli [J].
Battistoni, A ;
Folcarelli, S ;
Cervoni, L ;
Polizio, F ;
Desideri, A ;
Giartosio, A ;
Rotilio, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (10) :5655-5661
[4]   Impairment of the ubiquitin-proteasome system by protein aggregation [J].
Bence, NF ;
Sampat, RM ;
Kopito, RR .
SCIENCE, 2001, 292 (5521) :1552-1555
[5]   Axonal transport of mutant superoxide dismutase 1 and focal axonal abnormalities in the proximal axons of transgenic mice [J].
Borchelt, DR ;
Wong, PC ;
Becher, MW ;
Pardo, CA ;
Lee, MK ;
Xu, ZS ;
Thinakaran, G ;
Jenkins, NA ;
Copeland, NG ;
Sisodia, SS ;
Cleveland, DW ;
Price, DL ;
Hoffman, PN .
NEUROBIOLOGY OF DISEASE, 1998, 5 (01) :27-35
[6]   SUPEROXIDE-DISMUTASE-1 WITH MUTATIONS LINKED TO FAMILIAL AMYOTROPHIC-LATERAL-SCLEROSIS POSSESSES SIGNIFICANT ACTIVITY [J].
BORCHELT, DR ;
LEE, MK ;
SLUNT, HS ;
GUARNIERI, M ;
XU, ZS ;
WONG, PC ;
BROWN, RH ;
PRICE, DL ;
SISODIA, SS ;
CLEVELAND, DW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (17) :8292-8296
[7]   Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis [J].
Bruening, W ;
Roy, J ;
Giasson, B ;
Figlewicz, DA ;
Mushynski, WE ;
Durham, HD .
JOURNAL OF NEUROCHEMISTRY, 1999, 72 (02) :693-699
[8]   Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1 [J].
Bruijn, LI ;
Houseweart, MK ;
Kato, S ;
Anderson, KL ;
Anderson, SD ;
Ohama, E ;
Reaume, AG ;
Scott, RW ;
Cleveland, DW .
SCIENCE, 1998, 281 (5384) :1851-1854
[9]   Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases [J].
Bucciantini, M ;
Giannoni, E ;
Chiti, F ;
Baroni, F ;
Formigli, L ;
Zurdo, JS ;
Taddei, N ;
Ramponi, G ;
Dobson, CM ;
Stefani, M .
NATURE, 2002, 416 (6880) :507-511
[10]   Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders [J].
Caughey, B ;
Lansbury, PT .
ANNUAL REVIEW OF NEUROSCIENCE, 2003, 26 :267-298