Lagrangian support vector machines

被引:418
作者
Mangasaian, OL
Musicant, DR
机构
[1] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
[2] Carleton Coll, Dept Math & Comp Sci, Northfield, MN 55057 USA
关键词
D O I
10.1162/15324430152748218
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An implicit Lagrangian for the dual of a simple reformulation of the standard quadratic program of a linear support vector machine is proposed. This leads to the minimization of an unconstrained differentiable convex function in a space of dimensionality equal to the number of classified points. This problem is solvable by an extremely simple linearly convergent Lagrangian support vector machine (LSVM) algorithm. LSVM requires the inversion at the outset of a single matrix of the order of the much smaller dimensionality of the original input space phis one. The full algorithm is given in this paper in 11 lines of MATLAB code without any special optimization tools such as linear or quadratic programming solvers. This LSVM code can be used "as is" to solve classification problems with millions of points. For example, 2 million points in 10 dimensional input space were classified by a linear surface in 82 minutes on a Pentium III 500 MHz notebook with 384 megabytes of memory (and additional swap space), and in 7 minutes on a 250 MHz UltraSPARC 11 processor with 2 gigabytes of memory. Other standard classification test problems were also solved. Nonlinear kernel classification can also be solved by LSVM. Although it does not scale up to very large problems, it can handle any positive semidefinite kernel and is guaranteed to converge. A short MATLAB code is also given for nonlinear kernels and tested on a number of problems.
引用
收藏
页码:161 / 177
页数:17
相关论文
共 25 条
  • [1] [Anonymous], MATLAB US GUID
  • [2] Bertsekas D. P., 1999, NONLINEAR PROGRAMMIN
  • [3] Bradley P. S., 1998, Machine Learning. Proceedings of the Fifteenth International Conference (ICML'98), P82
  • [4] Massive data discrimination via linear support vector machines
    Bradley, PS
    Mangasarian, OL
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2000, 13 (01) : 1 - 10
  • [5] Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
  • [6] Cherkassky V.S., 1998, LEARNING DATA CONCEP, V1st ed.
  • [7] Cristianini N, 2000, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods
  • [8] FERRIS MC, 2000, 0005 U WISC COMP SCI
  • [9] Golub G. H., 2013, Matrix Computations
  • [10] Ho T. K., 1996, CHECKERBOARD DATASET