Mapping plasmons in nanoantennas via cathodoluminescence

被引:95
作者
Gomez-Medina, R. [1 ,2 ]
Yamamoto, N. [3 ]
Nakano, M. [3 ]
de Abajo, F. J. Garcia [1 ,4 ]
机构
[1] Donostia Int Phys Ctr, San Sebastian 20080, Spain
[2] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
[3] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan
[4] CSIC, Inst Opt, E-28006 Madrid, Spain
来源
NEW JOURNAL OF PHYSICS | 2008年 / 10卷
关键词
D O I
10.1088/1367-2630/10/10/105009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze cathodoluminescence (CL) emission from silver nanorod antennas induced by energetic electron beams. The dependence of the emission spectra on particle morphology and electron energy is explored by means of full electromagnetic calculations based on the boundary element method (BEM). We present light-emission image maps obtained by using a light detection system that is incorporated into a transmission electron microscope (TEM), operated in scanning mode. The intensity of each pixel in these maps corresponds to the photon counting rate when the electron beam is focused at that position of the sample. The maps exhibit strong dependence on the polarization of the emitted light and reveal standing-wave patterns of surface plasmons sustained by the nanorods, leading to characteristic spatial variations that correspond to the actual plasmon-mode symmetries. We thus demonstrate direct mapping of plasmon-mode symmetries by observing the variation of the CL intensity as the electron beam scans the sample. Good agreement between experimental and theoretical results is obtained, including the spatial modulation of the intensity along the direction perpendicular to the rods. In particular, plasmon modes of different azimuthal nature are resolved via their characteristic spatial dependence in our polarization-sensitive light detection system.
引用
收藏
页数:13
相关论文
共 38 条
[1]   Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution [J].
Bashevoy, M. V. ;
Jonsson, F. ;
MacDonald, K. F. ;
Chen, Y. ;
Zheludev, N. I. .
OPTICS EXPRESS, 2007, 15 (18) :11313-11320
[2]   Generation of traveling surface plasmon waves by free-electron impact [J].
Bashevoy, M. V. ;
Jonsson, F. ;
Krasavin, A. V. ;
Zheludev, N. I. ;
Chen, Y. ;
Stockman, M. I. .
NANO LETTERS, 2006, 6 (06) :1113-1115
[3]   INELASTIC-SCATTERING OF FAST ELECTRONS IN CLUSTERS OF SMALL SPHERES [J].
BATSON, PE .
SURFACE SCIENCE, 1985, 156 (JUN) :720-734
[4]  
Bohren C. F., 1983, ABSORPTION SCATTERIN
[5]   Mapping surface plasmons at the nanometre scale with an electron beam [J].
Bosman, Michel ;
Keast, Vicki J. ;
Watanabe, Masashi ;
Maaroof, Abbas I. ;
Cortie, Michael B. .
NANOTECHNOLOGY, 2007, 18 (16)
[6]   Mapping the plasmon resonances of metallic nanoantennas [J].
Bryant, Garnett W. ;
De Abajo, F. Javier Garcia ;
Aizpurua, Javier .
NANO LETTERS, 2008, 8 (02) :631-636
[7]   Chemistry and properties of nanocrystals of different shapes [J].
Burda, C ;
Chen, XB ;
Narayanan, R ;
El-Sayed, MA .
CHEMICAL REVIEWS, 2005, 105 (04) :1025-1102
[8]   ENERGY-LOSSES OF FAST ELECTRONS AT CRYSTAL-SURFACES [J].
COWLEY, JM .
PHYSICAL REVIEW B, 1982, 25 (02) :1401-1404
[9]   Optical frequency mixing at coupled gold nanoparticles [J].
Danckwerts, Matthias ;
Novotny, Lukas .
PHYSICAL REVIEW LETTERS, 2007, 98 (02)
[10]  
de Abajo FJG, 1998, PHYS REV LETT, V80, P5180