Convergence properties of a class of learning vector quantization algorithms

被引:16
作者
Kosmatopoulos, EB [1 ]
Christodoulou, MA [1 ]
机构
[1] TECH UNIV CRETE, DEPT ELECTR & COMP ENGN, KHANIA, CRETE, GREECE
关键词
D O I
10.1109/83.480771
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a mathematical analysis of a class of learning vector quantization (LVQ) algorithms is presented, Using an appropriate time-coordinate transformation, we show that the LVQ algorithms under consideration can be transformed into linear time-varying stochastic difference equations. Using this fact, we apply stochastic Lyapunov stability arguments, and we prove that the LVQ algorithms under consideration do indeed converge, provided that some appropriate conditions hold.
引用
收藏
页码:361 / 368
页数:8
相关论文
共 24 条
[1]  
[Anonymous], 1985, Recursive Estimation and Control for Stochastic Systems
[2]  
[Anonymous], 1988, Self-Organization and Associative Memory
[3]   A CLUSTERING TECHNIQUE FOR SUMMARIZING MULTIVARIATE DATA [J].
BALL, GH ;
HALL, DJ .
BEHAVIORAL SCIENCE, 1967, 12 (02) :153-&
[4]  
BARAS JS, 1992, P INT C NEURAL NETWO, V3, P17
[5]   A CONVERGENCE THEOREM FOR GROSSBERG LEARNING [J].
CLARK, DM ;
RAVISHANKAR, K .
NEURAL NETWORKS, 1990, 3 (01) :87-92
[6]   A STOCHASTIC-MODEL OF RETINOTOPY - A SELF-ORGANIZING PROCESS [J].
COTTRELL, M ;
FORT, JC .
BIOLOGICAL CYBERNETICS, 1986, 53 (06) :405-411
[7]  
Goodwin G C., 1984, ADAPTIVE FILTERING P
[8]  
Gray R. M., 1984, IEEE ASSP Magazine, V1, P4, DOI 10.1109/MASSP.1984.1162229
[9]  
KUSHNER HJ, 1978, STOCHASTIC APPROXIMA
[10]  
LAVIGNA A, 1989, THESIS U MARYLAND CO