A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks

被引:162
作者
Gelnar, PA
Krauss, BR
Sheehe, PR
Szeverenyi, NM
Apkarian, AV
机构
[1] SUNY Hlth Sci Ctr, Dept Neurosurg, Syracuse, NY 13210 USA
[2] SUNY Hlth Sci Ctr, Dept Neurosci & Physiol, Syracuse, NY 13210 USA
[3] SUNY Hlth Sci Ctr, Dept Radiol, Syracuse, NY 13210 USA
关键词
functional brain imaging; human; cortex; pain; digit apposition; touch;
D O I
10.1006/nimg.1999.0482
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cortical activity due to a thermal painful stimulus applied to the right hand was studied in the middle third of the contralateral brain and compared to activations for vibrotactile and motor tasks using the same body part, in nine normal subjects. Cortical activity was demonstrated utilizing multislice echo-planar functional magnetic resonance imaging (fMRI) and a surface coil. The cortical activity was analyzed based upon individual subject activity maps and on group-averaged activity maps. The results show significant differences in activations across the three tasks and the cortical areas studied. The study indicates that fMRI enables examination of cortical networks subserving pain perception at an anatomical detail not available with other brain imaging techniques and shows that this cortical network underlying pain perception shares components with the networks underlying touch perception and motor execution. However, the thermal pain perception network also has components that are unique to this percept. The uniquely activated areas were in the secondary somatosensory region, insula, and posterior cingulate cortex. The posterior cingulate cortex activity was in a region that, in the monkey, receives nociceptive inputs from posterior thalamic medial and lateral nuclei that in turn are targets for spinothalamic terminations. Discrete subdivisions of the primary somatosensory and motor cortical areas were also activated in the thermal pain task, showing region-dependent differences in the extent of overlap with the other two tasks. Within the primary motor cortex, a hand region was preferentially active in the task in which the stimulus was painful heat. In the primary somatosensory cortex most activity in the painful heat task was localized to area 1, where the motor and vibratory task activities were also coincident. The study also indicates that the functional connectivity ac:ross multiple cortical regions reorganizes dynamically with each task, hi (C) 1999 Academic Press.
引用
收藏
页码:460 / 482
页数:23
相关论文
共 87 条
[1]   Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography [J].
Adler, LJ ;
Gyulai, FE ;
Diehl, DJ ;
Mintun, MA ;
Winter, PM ;
Firestone, LL .
ANESTHESIA AND ANALGESIA, 1997, 84 (01) :120-126
[2]   Somatotopic organization along the central sulcus, for pain localization in humans, as revealed by positron emission tomography [J].
Andersson, JLR ;
Lilja, A ;
Hartvig, P ;
Langstrom, B ;
Gordh, T ;
Handwerker, H ;
Torebjork, E .
EXPERIMENTAL BRAIN RESEARCH, 1997, 117 (02) :192-199
[3]   Differentiating cortical areas related to pain perception from stimulus identification: Temporal analysis of fMRI activity [J].
Apkarian, AV ;
Darbar, A ;
Krauss, BR ;
Gelnar, PA ;
Szeverenyi, NM .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 81 (06) :2956-2963
[4]   PERSISTENT PAIN INHIBITS CONTRALATERAL SOMATOSENSORY CORTICAL ACTIVITY IN HUMANS [J].
APKARIAN, AV ;
STEA, RA ;
MANGLOS, SH ;
SZEVERENYI, NM ;
KING, RB ;
THOMAS, FD .
NEUROSCIENCE LETTERS, 1992, 140 (02) :141-147
[5]   PRIMATE SPINOTHALAMIC PATHWAYS .3. THALAMIC TERMINATIONS OF THE DORSOLATERAL AND VENTRAL SPINOTHALAMIC PATHWAYS [J].
APKARIAN, AV ;
HODGE, CJ .
JOURNAL OF COMPARATIVE NEUROLOGY, 1989, 288 (03) :493-511
[6]  
APKARIAN AV, 1997, PAIN MECH MANAGEMENT, P212
[7]   RESPONSES OF NEURONS IN THE RAT VENTROLATERAL ORBITAL CORTEX TO PHASIC AND TONIC NOCICEPTIVE STIMULATION [J].
BACKONJA, M ;
MILETIC, V .
BRAIN RESEARCH, 1991, 557 (1-2) :353-355
[8]   TIME COURSE EPI OF HUMAN BRAIN-FUNCTION DURING TASK ACTIVATION [J].
BANDETTINI, PA ;
WONG, EC ;
HINKS, RS ;
TIKOFSKY, RS ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1992, 25 (02) :390-397
[9]  
BARNETT EM, 1995, J NEUROSCI, V15, P2972
[10]   Human brain language areas identified by functional magnetic resonance imaging [J].
Binder, JR ;
Frost, JA ;
Hammeke, TA ;
Cox, RW ;
Rao, SM ;
Prieto, T .
JOURNAL OF NEUROSCIENCE, 1997, 17 (01) :353-362