A Fast Wavelet-Based Algorithm for Global and Local Image Sharpness Estimation

被引:220
作者
Vu, Phong V. [1 ]
Chandler, Damon M. [1 ]
机构
[1] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA
基金
美国国家科学基金会;
关键词
Blur; image quality; local image sharpness; sharpness; wavelet;
D O I
10.1109/LSP.2012.2199980
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we present a simple, yet effective wavelet-based algorithm for estimating both global and local image sharpness (FISH, Fast Image Sharpness). FISH operates by first decomposing the input image via a three-level separable discrete wavelet transform (DWT). Next, the log-energies of the DWT subbands are computed. Finally, a scalar index corresponding to the image's overall sharpness is computed via a weighted average of these log-energies. Testing on several image databases demonstrates that, despite its simplicity, FISH is competitive with the currently best-performing techniques both for sharpness estimation and for no-reference image quality assessment.
引用
收藏
页码:423 / 426
页数:4
相关论文
共 22 条
[1]  
Chen M. J., 2009, INT WORKSH QUAL MULT
[2]  
Cohen A., 1992, COMMUN PURE APPL MAT, V45
[3]  
FERZLI R, 2005, INT WORKSH VID PROC
[4]   A No-Reference Objective Image Sharpness Metric Based on the Notion of Just Noticeable Blur (JNB) [J].
Ferzli, Rony ;
Karam, Lina J. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (04) :717-728
[5]  
Hassen R., 2010, IEEE INT C AC SPEECH
[6]  
Kristan M., 2006, PATTERN RECOGNIT LET, V27
[7]   Most apparent distortion: full-reference image quality assessment and the role of strategy [J].
Larson, Eric C. ;
Chandler, Damon M. .
JOURNAL OF ELECTRONIC IMAGING, 2010, 19 (01)
[8]  
Liu H, 2011, EUR WORKSH VIS INF P
[9]  
Marichal X., 1999, IEEE INT C IM PROC I, V2
[10]  
Marziliano P., 2002, IEEE INT C IM PROC I, V3