Molecular architecture of the thylakoid membrane: Lipid diffusion space for plastoquinone

被引:169
作者
Kirchhoff, H
Mukherjee, U
Galla, HJ
机构
[1] Inst Bot, D-48149 Munster, Germany
[2] Inst Biochem, D-48149 Munster, Germany
关键词
D O I
10.1021/bi011650y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have determined the stoichiometric composition of membrane components (lipids and proteins) in spinach thylakoids and have derived the molecular area occupied by these components. From this analysis, the lipid phase diffusion space, the fraction of lipids located in the first protein solvation shell (boundary lipids), and the plastoquinone (PQ) concentration are derived. On the basis of these stoichiometric data, we have analyzed the motion of PQ between photosystem (PS) II and cytochrome (cyt.) bf complexes in this highly protein obstructed membrane (protein area about 70%) using percolation theory. This analysis reveals an inefficient diffusion process. We propose that distinct structural features of the thylakoid membrane (grana formation, microdomains) could help to minimize these inefficiencies and ensure a non-rate limiting P Q diffusion process. A large amount of published evidence supports the idea that higher protein associations exist, especially in grana thylakoids. From the quantification of the boundary lipid fraction (about 60%), we conclude that protein complexes involved in these associations should be spaced by lipids. Lipid-spaced protein aggregations in thylakoids are qualitatively different to previously characterized associations (multisubunit complexes, supercomplexes). We derive a hierarchy of protein and lipid interactions in the thylakoid membrane.
引用
收藏
页码:4872 / 4882
页数:11
相关论文
共 88 条
[1]   The structure and function of the chloroplast photosynthetic membrane - A model for the domain organization [J].
Albertsson, PA .
PHOTOSYNTHESIS RESEARCH, 1995, 46 (1-2) :141-149
[2]   CYTOCHROME-B6F COMPLEX - DYNAMIC MOLECULAR-ORGANIZATION, FUNCTION AND ACCLIMATION [J].
ANDERSON, JM .
PHOTOSYNTHESIS RESEARCH, 1992, 34 (03) :341-357
[3]   THYLAKOID MEMBRANE ORGANIZATION IN SUN SHADE ACCLIMATION [J].
ANDERSON, JM ;
CHOW, WS ;
GOODCHILD, DJ .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1988, 15 (1-2) :11-26
[4]   HETEROGENEITY IN PHOTOSYSTEM-I - THE LARGER ANTENNA OF PHOTOSYSTEM-I-ALPHA IS DUE TO FUNCTIONAL CONNECTION TO A SPECIAL POOL OF LHCII [J].
ANDREASSON, E ;
ALBERTSSON, PA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1141 (2-3) :175-182
[5]   TOO MUCH OF A GOOD THING - LIGHT CAN BE BAD FOR PHOTOSYNTHESIS [J].
BARBER, J ;
ANDERSSON, B .
TRENDS IN BIOCHEMICAL SCIENCES, 1992, 17 (02) :61-66
[6]  
BARTLETT GR, 1959, J BIOL CHEM, V234, P466
[7]   BIOCHEMICAL AND FUNCTIONAL-PROPERTIES OF PHOTOSYSTEM-II IN AGRANAL MEMBRANES FROM MAIZE MESOPHYLL AND BUNDLE-SHEATH CHLOROPLASTS [J].
BASSI, R ;
MARQUARDT, J ;
LAVERGNE, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 233 (03) :709-719
[8]   THE PLASTOQUINONE DIFFUSION-COEFFICIENT IN CHLOROPLASTS AND ITS MECHANISTIC IMPLICATIONS [J].
BLACKWELL, M ;
GIBAS, C ;
GYGAX, S ;
ROMAN, D ;
WAGNER, B .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1994, 1183 (03) :533-543
[9]   EFFECT OF INTEGRAL MEMBRANE-PROTEINS ON THE LATERAL MOBILITY OF PLASTOQUINONE IN PHOSPHATIDYLCHOLINE PROTEOLIPOSOMES [J].
BLACKWELL, MF ;
WHITMARSH, J .
BIOPHYSICAL JOURNAL, 1990, 58 (05) :1259-1271
[10]   A METHOD FOR ESTIMATING LATERAL DIFFUSION-COEFFICIENTS IN MEMBRANES FROM STEADY-STATE FLUORESCENCE QUENCHING STUDIES [J].
BLACKWELL, MF ;
GOUNARIS, K ;
ZARA, SJ ;
BARBER, J .
BIOPHYSICAL JOURNAL, 1987, 51 (05) :735-744