Fractional diffusion: probability distributions and random walk models

被引:80
作者
Gorenflo, R
Mainardi, F
Moretti, D
Pagnini, G
Paradisi, P
机构
[1] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy
[2] INFN, Sez Bologna, I-40126 Bologna, Italy
[3] CRIBISNET SpA, I-40122 Bologna, Italy
[4] CNR, ISAC, I-40129 Bologna, Italy
[5] Univ Bologna, DIENCA, I-40136 Bologna, Italy
关键词
random walks; stable probability distributions; anomalous diffusion;
D O I
10.1016/S0378-4371(01)00647-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a variety of models of random walk, discrete in space and time, suitable for simulating random variables whose probability density obeys a space-time fractional diffusion equation. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:106 / 112
页数:7
相关论文
共 22 条
[1]  
Feller W., 1971, An introduction to probability theory and its applications, V2
[2]   FRACTIONAL DIFFUSION EQUATION FOR TRANSPORT PHENOMENA IN RANDOM-MEDIA [J].
GIONA, M ;
ROMAN, HE .
PHYSICA A, 1992, 185 (1-4) :87-97
[3]   Discrete random walk models for symmetric Levy-Feller diffusion processes [J].
Gorenflo, R ;
De Fabritiis, G ;
Mainardi, F .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 269 (01) :79-89
[4]  
Gorenflo R, 1999, Z ANAL ANWEND, V18, P231
[5]  
Gorenflo R., 1998, Fract. Calc. Appl. Anal., V1, P167
[6]  
Gorenflo R., 1997, Fractional Calculus: Integral and Differential Equations of Fractional Order, DOI DOI 10.1007/978-3-7091-2664-6_5
[7]  
GORENFLO R, NONLINEAR DYNAMICS
[8]  
GORENFLO R, UNPUB CHEM PHYS
[9]  
Hilfer R, 2000, Applications of Fractional Calculus in Physics, DOI [10.1142/3779, DOI 10.1142/3779]
[10]  
Kilbas AA, 1993, Fractional Integral and Derivatives: Theory and Applications