Alternative polyadenylation of adeno-associated virus type 5 RNA within an internal intron is governed by the distance between the promoter and the intron and is inhibited by U1 small nuclear RNP binding to the intervening donor

被引:25
作者
Qiu, JM [1 ]
Pintel, DJ [1 ]
机构
[1] Univ Missouri, Sch Med, Dept Mol Microbiol & Immunol, Columbia, MO 65212 USA
关键词
D O I
10.1074/jbc.M312734200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Adeno-associated virus type 5 is unique among adeno-associated virus serotypes in that it uses a polyadenylation site in the center of the genome. The great majority of transcripts generated from the upstream P7 and P19 promoters are polyadenylated at a site in the central intron ((pA)p); however, most of the viral transcripts generated by the proximal P41 promoter are polyadenylated at the distal polyadenylation site at the 3' end of the genome (pA)d and subsequently spliced. Polyadenylation at (pA) p increases as the distance between the RNA initiation site and the intron and (pA) p site is increased. The steady-state level of RNAs polyadenylated at (pA) p is independent of the promoter used or of the intervening sequence but is dependent upon competition with splicing, inhibition by U1 snRNP binding to the intron donor, and the intrinsic efficiency of the cleavage/polyadenylation reaction. Each of these determinants shows a marked dependence on the distance between the RNA initiation site and the intron and (pA) p. Finally, unlike other reported systems, inhibition of (pA) p by U1 snRNP binding to the intron donor is decreased as the distance between the donor and (pA) p is increased.
引用
收藏
页码:14889 / 14898
页数:10
相关论文
共 36 条
[1]   The HIV-1 5' LTR poly(A) site is inactivated by U1 snRNP interaction with the downstream major splice donor site [J].
Ashe, MP ;
Pearson, LH ;
Proudfoot, NJ .
EMBO JOURNAL, 1997, 16 (18) :5752-5763
[2]   POLY(A) SITE SELECTION IN THE HIV-1 PROVIRUS - INHIBITION OF PROMOTER-PROXIMAL POLYADENYLATION BY THE DOWNSTREAM MAJOR SPLICE DONOR SITE [J].
ASHE, MP ;
GRIFFIN, P ;
JAMES, W ;
PROUDFOOT, NJ .
GENES & DEVELOPMENT, 1995, 9 (23) :3008-3025
[3]   Stent-loop 1 of the U1 snRNP plays a critical role in the suppression of HIV-1 polyadenylation [J].
Ashe, MP ;
Furger, A ;
Proudfoot, NJ .
RNA, 2000, 6 (02) :170-177
[4]   CHARACTERIZATION OF THE DNA OF A DEFECTIVE HUMAN PARVOVIRUS ISOLATED FROM A GENITAL SITE [J].
BANTELSCHAAL, U ;
HAUSEN, HZ .
VIROLOGY, 1984, 134 (01) :52-63
[5]   DIFFERENTIATION-SPECIFIC ALTERNATIVE SPLICING OF BOVINE PAPILLOMAVIRUS LATE MESSENGER-RNAS [J].
BARKSDALE, SK ;
BAKER, CC .
JOURNAL OF VIROLOGY, 1995, 69 (10) :6553-6556
[6]   Reduction of target gene expression by a modified U1 snRNA [J].
Beckley, SA ;
Liu, P ;
Stover, ML ;
Gunderson, SI ;
Lichtler, AC ;
Rowe, DW .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (08) :2815-2825
[7]   THE HUMAN U1 SNRNP-SPECIFIC U1A PROTEIN INHIBITS POLYADENYLATION OF ITS OWN PREMESSENGER RNA [J].
BOELENS, WC ;
JANSEN, EJR ;
VANVENROOIJ, WJ ;
STRIPECKE, R ;
MATTAJ, IW ;
GUNDERSON, SI .
CELL, 1993, 72 (06) :881-892
[8]   The yeast splicing factor Mud13p is a commitment complex component and corresponds to CBP20 the small subunit of the nuclear cap-binding complex [J].
Colot, HV ;
Stutz, F ;
Rosbash, M .
GENES & DEVELOPMENT, 1996, 10 (13) :1699-1708
[9]   2 MESSENGER-RNAS CAN BE PRODUCED FROM A SINGLE IMMUNOGLOBULIN-MU GENE BY ALTERNATIVE RNA PROCESSING PATHWAYS [J].
EARLY, P ;
ROGERS, J ;
DAVIS, M ;
CALAME, K ;
BOND, M ;
WALL, R ;
HOOD, L .
CELL, 1980, 20 (02) :313-319
[10]   Capping, splicing, and 3′ processing are independently stimulated by RNA polymerase II:: different functions for different segments of the CTD [J].
Fong, N ;
Bentley, DL .
GENES & DEVELOPMENT, 2001, 15 (14) :1783-1795