Design of high-temperature, gas-phase synthesis of hard or soft TiO2 agglomerates

被引:57
作者
Grass, RN [1 ]
Tsantilis, S [1 ]
Pratsinis, SE [1 ]
机构
[1] ETH, Particle Technol Lab, Inst Proc Engn, Dept Mech & Proc Engn,D MAVT, CH-8092 Zurich, Switzerland
关键词
aerosol; degree of agglomeration; sintering; nanoparticles; structure;
D O I
10.1002/aic.10739
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Conditions for high temperature, aerosol synthesis of titania (TiO2) with controlled degree of agglomeration are identified. Accounting for simultaneous gas phase and surface reactions, coagulation and sintering during formation and growth of titania by oxidation of Ti-tetraisopropoxide (TTIP) and TiCl4 vapors, the evolution of the primary particle and agglomerate collision diameters is presented at nonisothermal conditions neglecting the polydispersity of the particle-size distribution. Hard- or soft-agglomerate formation is identified at the end of full coalescence and sintering, respectively. The role of surface reaction on the evolution of the agglomerate state is examined. Diagrams for the degree of hard-agglomeration as well as the size of the primary TiO2 particles are developed in terms of maximum process temperature, cooling rate and precursor initial molar fraction and compared with experimental data on synthesis of nonagglomerated TiO2. (c) 2005 American Institute of Chemical Engineers
引用
收藏
页码:1318 / 1325
页数:8
相关论文
共 32 条
[1]   MONTE-CARLO SIMULATION OF PARTICLE COAGULATION AND SINTERING [J].
AKHTAR, MK ;
LIPSCOMB, GG ;
PRATSINIS, SE .
AEROSOL SCIENCE AND TECHNOLOGY, 1994, 21 (01) :83-93
[2]  
[Anonymous], 1986, ENV POL SUS DEV
[3]   Monitoring the flame synthesis of TiO2 particles by in-situ FTIR spectroscopy and thermophoretic sampling [J].
Arabi-Katbi, OI ;
Pratsinis, SE ;
Morrison, PW ;
Megaridis, CM .
COMBUSTION AND FLAME, 2001, 124 (04) :560-572
[4]   On the relevance of accounting for the evolution of the fractal dimension in aerosol process simulations [J].
Artelt, C ;
Schmid, HJ ;
Peukert, W .
JOURNAL OF AEROSOL SCIENCE, 2003, 34 (05) :511-534
[5]  
BATTISTON GA, 1997, P 14 INT CVD CONV EU, V9725
[6]   Probing the dynamics of nanoparticle growth in a flame using synchrotron radiation [J].
Beaucage, G ;
Kammler, HK ;
Mueller, R ;
Strobel, R ;
Agashe, N ;
Pratsinis, SE ;
Narayanan, T .
NATURE MATERIALS, 2004, 3 (06) :370-374
[7]   Flame synthesis of calcium-, strontium-, barium fluoride nanoparticles and sodium chloride [J].
Grass, RN ;
Stark, WJ .
CHEMICAL COMMUNICATIONS, 2005, (13) :1767-1769
[8]   Synthesis of ZnO particles in a quench-cooled flame reactor [J].
Hansen, JP ;
Jensen, JR ;
Livbjerg, H ;
Johannessen, T .
AICHE JOURNAL, 2001, 47 (11) :2413-2418
[9]  
Hinds W. C., 1999, AEROSOL TECHNOLOGY
[10]   Fractal analysis of flame-synthesized nanostructured silica and titania powders using small-angle X-ray scattering [J].
Hyeon-Lee, J ;
Beaucage, G ;
Pratsinis, SE ;
Vemury, S .
LANGMUIR, 1998, 14 (20) :5751-5756