Promoting axonal regeneration in the central nervous system by enhancing the cell body response to axotomy

被引:119
作者
Plunet, W
Kwon, BK
Tetzlaff, W
机构
[1] Univ British Columbia, CORD, Vancouver, BC V6T 1Z4, Canada
[2] Univ British Columbia, Div Spine Surg, Dept Orthopaed, Vancouver, BC V5Z 1M9, Canada
[3] Univ British Columbia, Dept Zool, Vancouver, BC V5Z 1M9, Canada
关键词
D O I
10.1002/jnr.10176
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neurons projecting into the peripheral nervous system (PNS) regenerate their axons after injury, in contrast to those confined to the central nervous system (CNS). Both neuronal and nonneuronal factors contribute to the lack of CNS regeneration. In this review we concentrate on the differential gene expression response to axotomy in PNS vs. CNS neurons. In general CNS neurons fail to up-regulate or sustain the expression of regeneration-associated proteins (RAGs), including trophic factors and their receptors. The presumed lack of trophio support of axotomized CNS neurons provided the rationale for the exogenous application of trophic factors, either to the lesion site or to the cell bodies. Here, we review our data on the application of trophic factors to rubrospinal and corticospinal neurons. Cell body treatment of axotomized rubrospinal neurons with brain-derived neurotrophic factor (BDNF) reversed atrophy, increased GAP-43 and Talpha-1 tubulin mRNA expression, and promoted axonal regeneration into peripheral nerve grafts. Importantly, BDNF cell body treatment was still effective in the chronic setting, i.e., when initiated 1 year after injury, but BDNF had no effect when applied to the chronic spinal cord injury site. The ability to promote regeneration in chronically injured neurons will hopefully contribute to the development of treatment strategies for chronic spinal injuries. (C) 2002 Wiley-Liss, Inc.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 80 条
[1]  
Anderson PN, 1998, PROG BRAIN RES, V117, P211
[2]  
Bandtlow CE, 2000, GLIA, V29, P175, DOI 10.1002/(SICI)1098-1136(20000115)29:2<175::AID-GLIA11>3.0.CO
[3]  
2-F
[4]  
Becker T, 1998, J NEUROSCI, V18, P5789
[5]   Inosine stimulates extensive axon collateral growth in the vat corticospinal tract after injury [J].
Benowitz, LI ;
Goldberg, DE ;
Madsen, JR ;
Soni, D ;
Irwin, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (23) :13486-13490
[6]   Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve [J].
Berry, M ;
Carlile, J ;
Hunter, A .
JOURNAL OF NEUROCYTOLOGY, 1996, 25 (02) :147-170
[7]   Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons [J].
Bomze, HM ;
Bulsara, KR ;
Iskandar, BJ ;
Caroni, P ;
Skene, JHP .
NATURE NEUROSCIENCE, 2001, 4 (01) :38-43
[8]   Transplants and neurotrophic factors prevent atrophy of mature CNS neurons after spinal cord injury [J].
Bregman, BS ;
Broude, E ;
McAtee, M ;
Kelley, MS .
EXPERIMENTAL NEUROLOGY, 1998, 149 (01) :13-27
[9]   c-Jun expression in adult rat dorsal root ganglion neurons: Differential response after central or peripheral axotomy [J].
Broude, E ;
McAtee, M ;
Kelley, MS ;
Bregman, BS .
EXPERIMENTAL NEUROLOGY, 1997, 148 (01) :367-377
[10]  
Buffo A, 1997, J NEUROSCI, V17, P8778