Cold sensitivity in axotomized fibers of experimental neuromas in mice

被引:29
作者
Roza, C [1 ]
Belmonte, C [1 ]
Viana, F [1 ]
机构
[1] Univ Miguel Hernandez, CSIC, Inst Neurociencias Alicante, Alicante 03550, Spain
关键词
cold hyperalgesia; neuropathic pain; TRPM8; menthol;
D O I
10.1016/j.pain.2005.10.006
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Cold allodynia is a common complaint in patients with peripheral neuropathies. However, cold sensitivity of the different types of sensory afferents present in injured nerves is poorly known. We recorded activity evoked by cold in intact sensory fibers of the skin-saphenous nerve preparation and in axotomized sensory fibers of similar to 21 days-old neuromas of the saphenous nerve of mice, in vitro. Sixteen percent of the axotomized units responded to cooling with an accelerating discharge, which stopped immediately during rewarming. This response was similar to that observed in the intact cold-sensitive fibers. Temperature threshold distribution was broad in intact and axotomized cold fibers (30.7-22 degrees C and 34.5-14.5 degrees C, respectively). One-third of the axotomized cold-sensitive fibers were mechanosensitive and none of them displayed spontaneous activity at baseline temperature. In contrast, 33% of intact cold-sensitive fibers exhibited low rates of ongoing discharges. In 60% of the cold-sensitive, axotomized units, cold threshold was shifted towards warmer values by the TRPM8 agonist 1-menthol. Seventy percent of axotomized, cold-insensitive units developed sensitivity to cold when exposed to 4-aminopyridine and their mean cold threshold (similar to 28 degrees C) was unaffected by menthol. Their response properties differed greatly from those of cold-sensitive units. In conclusion, the transducing capacity to cold stimuli is substantially recovered in neuromas. Furthermore, axotomized fibers maintain the 4-AP-sensitive, voltage-activated, transient potassium conductance that counteracts the depolarizing effects of cold in the majority of intact, cold-insensitive primary afferents. Our results indicate that injured nociceptors do not develop abnormal cold sensitivity, suggesting that other mechanisms underlie the cold-induced allodynia following peripheral nerve injury. (c) 2006 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:24 / 35
页数:12
相关论文
共 55 条
[1]  
Amir R, 2000, NEUROSCIENCE, V95, P189
[2]   Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor [J].
Babes, A ;
Zorzon, D ;
Reid, G .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2004, 20 (09) :2276-2282
[3]   Cooling inhibits capsaicin-induced currents in cultured rat dorsal root ganglion neurones [J].
Babes, A ;
Amuzescu, B ;
Krause, U ;
Scholz, A ;
Flonta, ML ;
Reid, G .
NEUROSCIENCE LETTERS, 2002, 317 (03) :131-134
[4]   RESPONSE OF CUTANEOUS SENSORY UNITS WITH UNMYELINATED FIBERS TO NOXIOUS STIMULI [J].
BESSOU, P ;
PERL, ER ;
SCHMITTR.LA .
JOURNAL OF NEUROPHYSIOLOGY, 1969, 32 (06) :1025-&
[5]   Thermosensitivity of acutely axotomized sensory nerve fibers [J].
Blenk, KH ;
Michaelis, M ;
Vogel, C ;
Janig, W .
JOURNAL OF NEUROPHYSIOLOGY, 1996, 76 (02) :743-752
[6]   DISCHARGE PATTERN OF AFFERENT-FIBERS FROM A NEUROMA [J].
BLUMBERG, H ;
JANIG, W .
PAIN, 1984, 20 (04) :335-353
[7]   STATIC AND DYNAMIC DISCHARGE PATTERNS OF BURSTING COLD FIBERS RELATED TO HYPOTHETICAL RECEPTOR MECHANISMS [J].
BRAUN, HA ;
BADE, H ;
HENSEL, H .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1980, 386 (01) :1-9
[8]   EFFECTS OF POTASSIUM CHANNEL-BLOCKING AGENTS ON SPONTANEOUS DISCHARGES FROM NEUROMAS IN RATS [J].
BURCHIEL, KJ ;
RUSSELL, LC .
JOURNAL OF NEUROSURGERY, 1985, 63 (02) :246-249
[9]   Differential thermosensitivity of sensory neurons in the guinea pig trigeminal ganglion [J].
Cabanes, C ;
Viana, F ;
Belmonte, C .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 90 (04) :2219-2231
[10]   Response properties of mechanoreceptors and nociceptors in mouse glabrous skin: an in vivo study [J].
Cain, DM ;
Khasabov, SG ;
Simone, DA .
JOURNAL OF NEUROPHYSIOLOGY, 2001, 85 (04) :1561-1574