The involvement of Srs2 in post-replication repair and homologous recombination in fission yeast

被引:53
作者
Doe, CL [1 ]
Whitby, MC [1 ]
机构
[1] Univ Oxford, Dept Biochem, Oxford OX1 3QU, England
关键词
D O I
10.1093/nar/gkh317
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Homologous recombination is important for the repair of double-strand breaks and daughter strand gaps, and also helps restart stalled and collapsed replication forks. However, sometimes recombination is inappropriate and can have deleterious consequences. To temper recombination, cells have employed DNA helicases that unwind joint DNA molecules and/or dissociate recombinases from DNA. Budding yeast Srs2 is one such helicase. It can act by dissociating Rad51 nucleoprotein filaments, and is required for channelling DNA lesions to the post-replication repair (PRR) pathway. Here we have investigated the role of Srs2 in controlling recombination in fission yeast. Similar to budding yeast, deletion of fission yeast srs2 results in hypersensitivity to a range of DNA damaging agents, rhp51-dependent hyper-recombination and synthetic sickness when combined with rqh1(-) that is suppressed by deleting rhp51, rhp55 or rhp57. Epistasis analysis indicates that Srs2 and the structure-specific endonuclease Mus81-Eme1 function in a sub-pathway of PRR for the tolerance/repair of UV-induced damage. However, unlike in Saccharomyces cerevisiae, Srs2 is not required for channelling lesions to the PRR pathway in Schizosaccharomyces pombe. In addition to acting as an antirecombinase, we also show that Srs2 can aid the recombinational repair of camptothecin-induced collapsed replication forks, independently of PRR.
引用
收藏
页码:1480 / 1491
页数:12
相关论文
共 54 条
[1]   RADH, A GENE OF SACCHAROMYCES-CEREVISIAE ENCODING A PUTATIVE DNA HELICASE INVOLVED IN DNA-REPAIR - CHARACTERISTICS OF RADH MUTANTS AND SEQUENCE OF THE GENE [J].
ABOUSSEKHRA, A ;
CHANET, R ;
ZGAGA, Z ;
CASSIERCHAUVAT, C ;
HEUDE, M ;
FABRE, F .
NUCLEIC ACIDS RESEARCH, 1989, 17 (18) :7211-7219
[2]   SEMIDOMINANT SUPPRESSORS OF SRS2 HELICASE MUTATIONS OF SACCHAROMYCES-CEREVISIAE MAP IN THE RAD51 GENE, WHOSE SEQUENCE PREDICTS A PROTEIN WITH SIMILARITIES TO PROKARYOTIC RECA PROTEINS [J].
ABOUSSEKHRA, A ;
CHANET, R ;
ADJIRI, A ;
FABRE, F .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (07) :3224-3234
[3]  
Allen F, 2002, LIBR J, V127, P85
[4]   Damage tolerance protein Mus81 associates with the FHA1 domain of checkpoint kinase Cds1 [J].
Boddy, MN ;
Lopez-Girona, A ;
Shanahan, P ;
Interthal, H ;
Heyer, WD ;
Russell, P .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (23) :8758-8766
[5]   Mus81-Eme1 are essential components of a Holliday junction resolvase [J].
Boddy, MN ;
Gaillard, PHL ;
McDonald, WH ;
Shanahan, P ;
Yates, JR ;
Russell, P .
CELL, 2001, 107 (04) :537-548
[6]   Suppression of genetic defects within the RAD6 pathway by srs2 is specific for error-free post-replication repair but not for damage-induced mutagenesis [J].
Broomfield, S ;
Xiao, W .
NUCLEIC ACIDS RESEARCH, 2002, 30 (03) :732-739
[7]   Mus81-Eme1 and Rqh1 involvement in processing stalled and collapsed replication forks [J].
Doe, CL ;
Ahn, JS ;
Dixon, J ;
Whitby, MC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (36) :32753-32759
[8]   CLONING AND CHARACTERIZATION OF THE SCHIZOSACCHAROMYCES-POMBE RAD8 GENE, A MEMBER OF THE SNF2 HELICASE FAMILY [J].
DOE, CL ;
MURRAY, JM ;
SHAYEGHI, M ;
HOSKINS, M ;
LEHMANN, AR ;
CARR, AM ;
WATTS, FZ .
NUCLEIC ACIDS RESEARCH, 1993, 21 (25) :5964-5971
[9]   Alternate pathways involving Sgs1/Top3, Mus81/Mus81, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication [J].
Fabre, F ;
Chan, A ;
Heyer, WD ;
Gangloff, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (26) :16887-16892
[10]   The endogenous Mus81-Eme1 complex resolves Holliday junctions by a nick and counternick mechanism [J].
Gaillard, PHL ;
Noguchi, E ;
Shanahan, P ;
Russell, P .
MOLECULAR CELL, 2003, 12 (03) :747-759