An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice

被引:133
作者
Richly, E [1 ]
Leister, D [1 ]
机构
[1] Max Planck Inst Zuchtungsforsch, Abt Pflanzenzuchtung & Ertragsphysiol, D-50829 Cologne, Germany
关键词
comparative genomics; endosymbiosis; evolution; organelle; transit peptide;
D O I
10.1016/j.gene.2004.01.008
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Proteins that form part of the chloroplast proteome can be identified by computational prediction of the N-terminal presequences (chloroplast transit peptides, cTPs) of their cytoplasmic precursor proteins. The accuracy of four different cTP predictors has been evaluated on a test set of 4500 proteins whose subcellular localization is known, and was found to be substantially lower than previously reported. A combination of cTP prediction programs was superior to any one of the predictors alone. This combination was employed to estimate the size and composition of the chloroplast proteomes of Arabidopsis and rice, and about 2,100 (Arabidopsis thaliana) and 4800 (Oryza sativa) different chloroplast proteins with a cTP are predicted to be encoded by their nuclear genomes. A subset of around 900 chloroplast proteins, predominantly derived from the cyanobacterial endosymbiont and with functions mostly related to metabolism, energy and transcription, is shared by the two species. This points to the existence of both conserved nucleus-encoded chloroplast proteins that are predominantly of prokaryotic origin, and a large fraction of taxon-specific chloroplast-targeted proteins, in flowering plants. (C) 2004 Elsevier B.V All rights reserved.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 30 条
[1]   A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis [J].
Abdallah, F ;
Salamini, F ;
Leister, D .
TRENDS IN PLANT SCIENCE, 2000, 5 (04) :141-142
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Proteomics gives insight into the regulatory function of chloroplast thioredoxins [J].
Balmer, Y ;
Koller, A ;
del Val, G ;
Manieri, W ;
Schürmann, P ;
Buchanan, BB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (01) :370-375
[4]   Extensive feature detection of N-terminal protein sorting signals [J].
Bannai, H ;
Tamada, Y ;
Maruyama, O ;
Nakai, K ;
Miyano, S .
BIOINFORMATICS, 2002, 18 (02) :298-305
[5]   Chloroplast transit peptides: structure, function and evolution [J].
Bruce, BD .
TRENDS IN CELL BIOLOGY, 2000, 10 (10) :440-447
[6]   Predicting subcellular localization of proteins based on their N-terminal amino acid sequence [J].
Emanuelsson, O ;
Nielsen, H ;
Brunak, S ;
von Heijne, G .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (04) :1005-1016
[7]   ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites [J].
Emanuelsson, O ;
Nielsen, H ;
Von Heijne, G .
PROTEIN SCIENCE, 1999, 8 (05) :978-984
[8]   Prediction of organellar targeting signals [J].
Emanuelsson, O ;
von Heijne, G .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2001, 1541 (1-2) :114-119
[9]   High-throughput viral expression of cDNA-Green fluorescent protein fusions reveals novel subcellular addresses and identifies unique proteins that interact with plasmodesmata [J].
Escobara, NM ;
Haupt, S ;
Thow, G ;
Boevink, P ;
Chapmana, S ;
Oparka, K .
PLANT CELL, 2003, 15 (07) :1507-1523
[10]   Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana [J].
Ferro, M ;
Salvi, D ;
Brugière, S ;
Miras, S ;
Kowalski, S ;
Louwagie, M ;
Garin, J ;
Joyard, J ;
Rolland, N .
MOLECULAR & CELLULAR PROTEOMICS, 2003, 2 (05) :325-345