Nanoporous Ni(OH) Thin Film on 3D Ultrathin-Graphite Foam for Asymmetric Supercapacitor

被引:1062
作者
Ji, Junyi [1 ,2 ,3 ]
Zhang, Li Li [1 ,2 ]
Ji, Hengxing [1 ,2 ]
Li, Yang [3 ]
Zhao, Xin [1 ,2 ]
Bai, Xin [1 ,2 ]
Fan, Xiaobin [3 ]
Zhang, Fengbao [3 ]
Ruoff, Rodney S. [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[3] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
关键词
Ni(OH)(2); ultrathin-graphite foam; composite; supercapacitor; asymmetric; NICKEL-HYDROXIDE; ELECTROCHEMICAL CAPACITORS; GRAPHENE NETWORKS; ELECTRODE; OXIDE;
D O I
10.1021/nn4021955
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoporous nickel hydroxide (Ni(OH)(2)) thin film was grown on the surface of ultrathin-graphite foam (UGF) via a hydrothermal reaction. The resulting free-standing Ni(OH)(2)/UGf composite was used as the electrode in a supercapacitor without the need for addition of either binder or metal-based current collector. The highly conductive 3D UGF network facilitates electron transport and the porous Ni(OH)(2) thin film structure shortens ion diffusion paths and facilitates the rapid migration of electrolyte ions. An asymmetric supercapacitor was also made and studied with Ni(OH)(2)/UGF as the positive electrode and activated microwave exfoliated graphite oxide ('a-MEGO') as the negative electrode. The highest power density of the fully packaged asymmetric cell (44.0 kW/kg) was much higher (2-27 times higher), while the energy density was comparable to or higher, than high-end commercially available supercapacitors. This asymmetric supercapacitor had a capacitance retention of 63.2% after 10 000 cycles.
引用
收藏
页码:6237 / 6243
页数:7
相关论文
共 40 条
[1]   Block copolymer assisted synthesis of porous α-Ni(OH)2 microflowers with high surface areas as electrochemical pseudocapacitor materials [J].
Bastakoti, Bishnu Prasad ;
Huang, Hou-Sheng ;
Chen, Lin-Chi ;
Wu, Kevin C. -W. ;
Yamauchi, Yusuke .
CHEMICAL COMMUNICATIONS, 2012, 48 (73) :9150-9152
[2]   Ni(OH)2 tubes with mesoscale dimensions as positive-electrode materials of alkaline rechargeable batteries [J].
Cai, FS ;
Zhang, GY ;
Chen, J ;
Gou, XL ;
Liu, HK ;
Dou, SX .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (32) :4212-4216
[3]   Preparation of mesoporous nanocrystalline Co3O4 and its applicability of porosity to the formation of electrochemical capacitance [J].
Cao, L ;
Lu, M ;
Li, HL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A871-A875
[4]   Preparation of Novel 3D Graphene Networks for Supercapacitor Applications [J].
Cao, Xiehong ;
Shi, Yumeng ;
Shi, Wenhui ;
Lu, Gang ;
Huang, Xiao ;
Yan, Qingyu ;
Zhang, Qichun ;
Zhang, Hua .
SMALL, 2011, 7 (22) :3163-3168
[5]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[6]   Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors [J].
Chou, Shu-Lei ;
Wang, Jia-Zhao ;
Chew, Sau-Yen ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (11) :1724-1727
[7]   EFFECT OF COPRECIPITATED METAL-IONS ON THE ELECTROCHEMISTRY OF NICKEL-HYDROXIDE THIN-FILMS - CYCLIC VOLTAMMETRY IN 1M KOH [J].
CORRIGAN, DA ;
BENDERT, RM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (03) :723-728
[8]   A hierarchically structured Ni(OH)2 monolayer hollow-sphere array and its tunable optical properties over a large region [J].
Duan, Guotao ;
Cai, Weiping ;
Luo, Yuanyuan ;
Sun, Fengqiang .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (04) :644-650
[9]   Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors [J].
Hu, Chi-Chang ;
Chang, Kuo-Hsin ;
Lin, Ming-Champ ;
Wu, Yung-Tai .
NANO LETTERS, 2006, 6 (12) :2690-2695
[10]   Nickel hydroxide/activated carbon composite electrodes for electrochemical capacitors [J].
Huang, Qinghua ;
Wang, Xianyou ;
Li, Jun ;
Dai, Chunling ;
Gamboa, Sergio ;
Sebastian, P. J. .
JOURNAL OF POWER SOURCES, 2007, 164 (01) :425-429