Isoperimetric graph partitioning for image segmentation

被引:167
作者
Grady, L
Schwartz, EL
机构
[1] Siemens Corp Res, Dept Imaging & Visualizat, Princeton, NJ 08540 USA
[2] Boston Univ, Dept Cognit & Neural Syst, Boston, MA 02215 USA
[3] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
关键词
graph-theoretic methods; graphs and networks; graph algorithms; image representation; special architectures; algorithms; computer vision; applications;
D O I
10.1109/TPAMI.2006.57
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spectral graph partitioning provides a powerful approach to image segmentation. We introduce an alternate idea that finds partitions with a small isoperimetric constant, requiring solution to a linear system rather than an eigenvector problem. This approach produces the high quality segmentations of spectral methods, but with improved speed and stability.
引用
收藏
页码:469 / 475
页数:7
相关论文
共 33 条
[1]   LAMBDA-1, ISOPERIMETRIC-INEQUALITIES FOR GRAPHS, AND SUPERCONCENTRATORS [J].
ALON, N ;
MILMAN, VD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (01) :73-88
[2]  
ANDERSON WN, 1971, 7145 TR U MAR
[3]  
[Anonymous], 1974, CAMBRIDGE TRACTS MAT
[4]  
[Anonymous], 1966, S GEN NETW
[5]  
[Anonymous], 1997, REG C SER MATH
[6]  
[Anonymous], CSD96898 UCB
[7]  
[Anonymous], 1984, CARUS MATH MONOGRAPH
[8]  
[Anonymous], 1997, ARPACK Users' Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, DOI 10.1137/1.9780898719628
[9]  
Boykov Y.Y., 2001, ICCV, V1, P105, DOI DOI 10.1109/ICCV.2001.937505
[10]  
Cheeger J., 1969, Problems in Analysis, P195