Incorporating temporal variability to improve geostatistical analysis of satellite-observed CO2 in China

被引:44
作者
Zeng ZhaoCheng [1 ,2 ]
Lei LiPing [1 ]
Guo LiJie [1 ,2 ]
Zhang Li [1 ]
Zhang Bing [1 ]
机构
[1] Chinese Acad Sci, Key Lab Digital Earth Sci, Ctr Earth Observat & Digital Earth, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2013年 / 58卷 / 16期
基金
中国国家自然科学基金;
关键词
CO2; Greenhouse Gases Observing Satellite (GOSAT); geostatistical analysis; space-time kriging; product-sum model; PRODUCT; MODELS;
D O I
10.1007/s11434-012-5652-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Observations of atmospheric carbon dioxide (CO2) from satellites offer new data sources to understand global carbon cycling. The correlation structure of satellite-observed CO2 can be analyzed and modeled by geostatistical methods, and CO2 values at unsampled locations can be predicted with a correlation model. Conventional geostatistical analysis only investigates the spatial correlation of CO2, and does not consider temporal variation in the satellite-observed CO2 data. In this paper, a spatiotemporal geostatistical method that incorporates temporal variability is implemented and assessed for analyzing the spatiotemporal correlation structure and prediction of monthly CO2 in China. The spatiotemporal correlation is estimated and modeled by a product-sum variogram model with a global. nugget component. The variogram result indicates a significant degree of temporal correlation within satellite-observed CO2 data sets in China. Prediction of monthly CO2 using the spatiotemporal variogram model and space-time kriging procedure is implemented. The prediction is compared with a spatial-only geostatistical prediction approach using a cross-validation technique. The spatiotemporal approach gives better results, with higher correlation coefficient (r(2)), and less mean absolute prediction error and root mean square error. Moreover, the monthly mapping result generated from the spatiotemporal approach has less prediction uncertainty and more detailed spatial variation of CO2 than those from the spatial-only approach.
引用
收藏
页码:1948 / 1954
页数:7
相关论文
共 26 条
[1]  
[Anonymous], 1993, J AGR BIOL ENVIR ST
[2]   A survey of cross-validation procedures for model selection [J].
Arlot, Sylvain ;
Celisse, Alain .
STATISTICS SURVEYS, 2010, 4 :40-79
[3]   Temporal and spatial distribution of tropospheric CO2 over China based on satellite observations [J].
Bai WenGuang ;
Zhang XingYing ;
Zhang Peng .
CHINESE SCIENCE BULLETIN, 2010, 55 (31) :3612-3618
[4]  
Chiles Jean-Paul, 2009, Geostatistics: Modeling Spatial Uncertainty, V497
[5]   FITTING VARIOGRAM MODELS BY WEIGHTED LEAST-SQUARES [J].
CRESSIE, N .
JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY, 1985, 17 (05) :563-586
[6]  
Cressie Noel., 2011, STAT SPATIAL DATA
[7]   Predicting spatio-temporal random fields: Some computational aspects [J].
De Iaco, S. ;
Posa, D. .
COMPUTERS & GEOSCIENCES, 2012, 41 :12-24
[8]  
De Iaco S, 2001, STAT PROBABIL LETT, V52, P21
[9]   Space-time correlation analysis: a comparative study [J].
De Iaco, Sandra .
JOURNAL OF APPLIED STATISTICS, 2010, 37 (06) :1027-1041
[10]   A local space-time kriging approach applied to a national outpatient malaria data set [J].
Gething, P. W. ;
Atkinson, P. M. ;
Noor, A. M. ;
Gikandi, P. W. ;
Haye, S. I. ;
Nixon, M. S. .
COMPUTERS & GEOSCIENCES, 2007, 33 (10) :1337-1350