Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems

被引:258
作者
Haussener, Sophia [1 ,2 ]
Xiang, Chengxiang [3 ]
Spurgeon, Joshua M. [3 ]
Ardo, Shane [4 ,5 ]
Lewis, Nathan S. [3 ,4 ,5 ]
Weber, Adam Z. [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA
[2] Ecole Polytech Fed Lausanne, Inst Engn Mech, CH-1015 Lausanne, Switzerland
[3] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA
[4] CALTECH, Beckman Inst, Pasadena, CA 91125 USA
[5] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
关键词
HYDROGEN-PRODUCTION; NAFION MEMBRANES; EVOLUTION; TRANSPORT; H-2; DECOMPOSITION; RESISTANCE; DIFFUSION; ARRAYS; DEVICE;
D O I
10.1039/c2ee23187e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A validated multi-physics numerical model that accounts for charge and species conservation, fluid flow, and electrochemical processes has been used to analyze the performance of solar-driven photoelectrochemical water-splitting systems. The modeling has provided an in-depth analysis of conceptual designs, proof-of-concepts, feasibility investigations, and quantification of performance. The modeling has led to the formulation of design guidelines at the system and component levels, and has identified quantifiable gaps that warrant further research effort at the component level. The two characteristic generic types of photoelectrochemical systems that were analyzed utilized: (i) side-by-side photoelectrodes and (ii) back-to-back photoelectrodes. In these designs, small electrode dimensions (mm to cm range) and large electrolyte heights were required to produce small overall resistive losses in the system. Additionally, thick, non-permeable separators were required to achieve acceptably low rates of product crossover.
引用
收藏
页码:9922 / 9935
页数:14
相关论文
共 53 条
[1]   Molecular Simulation of Gas Adsorption, Diffusion, and Permeation in Hydrated Nafion Membranes [J].
Ban, Shuai ;
Huang, Cheng ;
Yuan, Xiao-Zi ;
Wang, Haijiang .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (39) :11352-11358
[2]  
Bard A. J., 2001, ELECTROCHEMICAL METH, V2o
[3]   Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement [J].
Blankenship, Robert E. ;
Tiede, David M. ;
Barber, James ;
Brudvig, Gary W. ;
Fleming, Graham ;
Ghirardi, Maria ;
Gunner, M. R. ;
Junge, Wolfgang ;
Kramer, David M. ;
Melis, Anastasios ;
Moore, Thomas A. ;
Moser, Christopher C. ;
Nocera, Daniel G. ;
Nozik, Arthur J. ;
Ort, Donald R. ;
Parson, William W. ;
Prince, Roger C. ;
Sayre, Richard T. .
SCIENCE, 2011, 332 (6031) :805-809
[4]   THE MECHANISM OF THE HYDROGEN EVOLUTION REACTION ON PLATINUM SILVER AND TUNGSTEN SURFACES IN ACID SOLUTIONS [J].
BOCKRIS, JO ;
AMMAR, IA ;
HUQ, AKMS .
JOURNAL OF PHYSICAL CHEMISTRY, 1957, 61 (07) :879-886
[6]   Modelling and development of photoelectrochemical reactor for H2 production [J].
Carver, C. ;
Ulissi, Z. ;
Ong, C. K. ;
Dennison, S. ;
Kelsall, G. H. ;
Hellgardt, K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (03) :2911-2923
[7]  
Comsol Inc, 2011, COMS MULT 4 2A
[8]  
Cussler E L., 2009, Diffusion: Mass Transfer in Fluid Systems
[9]   Computational modelling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities [J].
Djilali, N. .
ENERGY, 2007, 32 (04) :269-280
[10]   PHOTOCATALYTIC DECOMPOSITION OF WATER-VAPOR ON AN NIO-SRTIO3 CATALYST [J].
DOMEN, K ;
NAITO, S ;
SOMA, M ;
ONISHI, T ;
TAMARU, K .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1980, (12) :543-544