Adaptive H∞ excitation control of multimachine power systems via the Hamiltonian function method

被引:46
作者
Wang, YZ
Cheng, DZ [1 ]
Liu, YH
Li, CW
机构
[1] Chinese Acad Sci, Inst Syst Sci, Beijing 100080, Peoples R China
[2] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[3] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
关键词
D O I
10.1080/0020717042000196254
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using the Hamiltonian function method, this paper investigates the adaptive Hinfinity excitation control of multimachine power systems with disturbances and parameter perturbations. A key step in applying the Hamiltonian function method to the multimachine system is to express the system as a dissipative Hamiltonian system, i.e. to complete dissipative Hamiltonian realization (DHR). By using pre-feedback technique, this paper expresses the multimachine power system as a dissipative Hamiltonian system. Then, the stability analysis of the achieved dissipative Hamiltonian system is proceeded. Finally, based on the achieved DHR form, the adaptive Hinfinity excitation control of the multimachine power system is investigated and a decentralized simple excitation control strategy is obtained. Simulations on a six-machine system show that the adaptive Hinfinity excitation control strategy proposed in the paper is more effective than some other control schemes.
引用
收藏
页码:336 / 350
页数:15
相关论文
共 27 条
[1]   STABILIZING A MULTIMACHINE POWER-SYSTEM VIA DECENTRALIZED FEEDBACK LINEARIZING EXCITATION CONTROL [J].
CHAPMAN, JW ;
ILIC, MD ;
KING, CA ;
ENG, L ;
KAUFMAN, H .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1993, 8 (03) :830-839
[2]  
CHAPMAN JW, 1992, PROCEEDINGS OF THE 31ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P1123, DOI 10.1109/CDC.1992.371541
[3]   Geometric structure of generalized controlled Hamiltonian systems and its application [J].
Cheng, DZ ;
Xi, ZR ;
Lu, Q ;
Mei, SW .
SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2000, 43 (04) :365-379
[4]   A Hamiltonian viewpoint in the modeling of switching power converters [J].
Escobar, G ;
van der Schaft, AJ ;
Ortega, R .
AUTOMATICA, 1999, 35 (03) :445-452
[5]  
Jain S., 1994, IEEE Transactions on Control Systems Technology, V2, P436, DOI 10.1109/87.338663
[6]   Robust decentralized control of power systems utilizing only swing angle measurements [J].
Jain, S ;
Khorrami, F .
INTERNATIONAL JOURNAL OF CONTROL, 1997, 66 (04) :581-601
[7]  
Khalil HK., 1992, NONLINEAR SYSTEMS
[8]   Decentralized nonlinear optimal excitation control [J].
Lu, Q ;
Sun, Y ;
Xu, Z ;
Mochizuki, T .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (04) :1957-1962
[9]   NONLINEAR STABILIZING CONTROL OF MULTIMACHINE SYSTEMS [J].
LU, Q ;
SUN, YZ .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1989, 4 (01) :236-241
[10]   Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation [J].
Maschke, B ;
Ortega, R ;
van der Schaft, AJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (08) :1498-1502