Identification and characterization of two novel human mitochondrial elongation factor genes, hEFG2 and hEFG1, phylogenetically conserved through evolution

被引:44
作者
Hammarsund, M
Wilson, W
Corcoran, M
Merup, M
Einhorn, S
Grandér, D
Sangfelt, O
机构
[1] Karolinska Hosp & Inst, Dept Oncol Pathol, Canc Ctr Karolinska, S-17176 Stockholm, Sweden
[2] Karolinska Inst, KISAC, Ctr Genom & Bioinformat, Stockholm, Sweden
[3] Royal Bournemouth Hosp, Mol Biol Lab, Bournemouth BH7 7DW, Dorset, England
[4] Huddinge Univ Hosp, Karolinska Inst, Dept Med, Div Hematol, S-14186 Huddinge, Sweden
关键词
D O I
10.1007/s00439-001-0610-5
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Rapid progress in the sequencing of the genome of man and other species allows for the comparative analysis of their genetic structure and content. We have used a combined biochemical and computer-based approach to characterize a 146 kb human genomic bacterial artificial chromosome clone from chromosome 5q13 and discovered a novel human elongation-factor gene, hEFG2. The complete human EFG2 cDNA sequence is 3033 bp and contains 21 exons with conserved exon-intron splice junctions encompassing 45 kb of the genomic sequence with its 5'-end residing within a CpG island, characteristic of a housekeeping gene. The complete size of the hEFG2 cDNA was confirmed by Northern blot and reverse transcription/polymerase chain reaction analysis, which showed a single transcript of 3.2 kb ubiquitously expressed in various human tissues. The hEFG2 protein shows significant homology to several bacterial EF-G proteins, including that of Thermus thermophilus, and to the yeast Saccharomyces cerevisiae mitochondrial elongation factor-G (MEF2). Multiple alignments reveal a novel gene family of mitochondrial EF-G proteins that can by divided into two subgroups, EF-G I and EF-G2, in several eukaryotic species including S. pombe, Caenorhabditis elegans and Drosophila melanogaster. Using the information contained in the public databases, we also identified and cloned the complete coding sequence of the human EFG1 gene on chromosome 3q25. The cloning and characterization of these human mitochondrial elongation factor genes should permit us to address their role in the regulation of normal mitochondrial function and in various disease states.
引用
收藏
页码:542 / 550
页数:9
相关论文
共 30 条
[1]   The human elongation factor 1 A-2 gene (EEF1A2):: Complete sequence and characterization of gene structure and promoter activity [J].
Bischoff, C ;
Kahns, S ;
Lund, A ;
Jorgensen, HF ;
Præstegaard, M ;
Clark, BFC ;
Leffers, H .
GENOMICS, 2000, 68 (01) :63-70
[2]   Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2 [J].
Caldas, T ;
Laalami, S ;
Richarme, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (02) :855-860
[3]   Modulation of molecular mechanisms involved in protein synthesis machinery as a new tool for the control of cell proliferation [J].
Caraglia, M ;
Budillon, A ;
Vitale, G ;
Lupoli, G ;
Tagliaferri, P ;
Abbruzzese, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (13) :3919-3936
[4]   The unexplored 5q13 locus: A role in hematopoietic malignancies [J].
Castro, PD ;
Fairman, J ;
Nagarajan, L .
LEUKEMIA & LYMPHOMA, 1998, 30 (5-6) :443-448
[5]   REGIONAL LOCALIZATION OF ALPHA-GALACTOSIDASE (GLA) TO XPTER-]Q22, HEXOSAMINIDASE-B (HEXB) TO 5Q13-]QTER, AND ARYLSULFATASE B (ARSB) TO 5PTER-]Q13 [J].
FOX, MF ;
DUTOIT, DL ;
WARNICH, L ;
RETIEF, AE .
CYTOGENETICS AND CELL GENETICS, 1984, 38 (01) :45-49
[6]   Molecular cloning and characterization of the Arabidopsis thaliana α-subunit of elongation factor 1B [J].
Héricourt, F ;
Jupin, I .
FEBS LETTERS, 1999, 464 (03) :148-152
[7]   Transterm: a database of messenger RNA components and signals [J].
Jacobs, GH ;
Stockwell, PA ;
Schrieber, MJ ;
Tate, WP ;
Brown, CM .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :293-295
[8]   Interpreting cDNA sequences: Some insights from studies on translation [J].
Kozak, M .
MAMMALIAN GENOME, 1996, 7 (08) :563-574
[9]   The human mitochondrial elongation factor tu (EF-Tu) gene: cDNA sequence, genomic localization, genomic structure, and identification of a pseudogene [J].
Ling, MF ;
Merante, F ;
Chen, HS ;
Duff, C ;
Duncan, AMV ;
Robinson, BH .
GENE, 1997, 197 (1-2) :325-336
[10]  
Miller DL, 1977, MOL MECH PROTEIN BIO, P323