Minimum stress optimal design with the level set method

被引:127
作者
Allaire, Gregoire [1 ]
Jouve, Francois [2 ]
机构
[1] Ecole Polytech, CMAP, CNRS, F-91128 Palaiseau, France
[2] Univ Paris 07, Lab JL Lions, F-75252 Paris, France
关键词
Level set method; Shape derivative; Topological derivative;
D O I
10.1016/j.enganabound.2007.05.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper is devoted to minimum stress design in structural optimization. We propose a simple and efficient numerical algorithm for shape and topology optimization based on the level set method coupled with the topological derivative. We compute a shape derivative, as well as a topological derivative, for a stress-based objective function. Using an adjoint equation we implement a gradient algorithm for the minimization of the objective function. Several numerical examples in 2-d and 3-d are discussed. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:909 / 918
页数:10
相关论文
共 41 条
[1]  
Achtziger W, 2000, NATO SCI SER II-MATH, V7, P177
[2]  
ALLAIRE C, 2006, MATH APPL, V58
[3]  
Allaire G, 2005, CONTROL CYBERN, V34, P59
[4]   A level-set method for vibration and multiple loads structural optimization [J].
Allaire, G ;
Jouve, F .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (30-33) :3269-3290
[5]  
Allaire G, 2004, STRUCT MULTIDISCIP O, V28, P87, DOI [10.1007/s00158-004-0442-8, 10.1007/S00158-004-0442-8]
[6]   Structural optimization using sensitivity analysis and a level-set method [J].
Allaire, G ;
Jouve, F ;
Toader, AM .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (01) :363-393
[7]   A level-set method for shape optimization [J].
Allaire, G ;
Jouve, F ;
Toader, AM .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (12) :1125-1130
[8]   Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion [J].
Ammari, H ;
Kang, H ;
Nakamura, G ;
Tanuma, K .
JOURNAL OF ELASTICITY, 2002, 67 (02) :97-129
[9]   Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations [J].
Ammari, H ;
Vogelius, MS ;
Volkov, D .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (08) :769-814
[10]  
AMMARI H, 2004, LECT NOTES MATH, V1846