Monitoring of the large slow Kahrod landslide in Alborz mountain range (Iran) by GPS and SAR interferometry

被引:78
作者
Peyret, M. [1 ]
Djamour, Y. [2 ]
Rizza, M. [1 ]
Ritz, J. -F. [1 ]
Hurtrez, J. -E. [1 ]
Goudarzi, M. A. [2 ]
Nankali, H. [2 ]
Chery, J. [1 ]
Le Dortz, K. [1 ]
Uri, F. [1 ]
机构
[1] Univ Montpellier 2, CNRS, UMR 5243, F-34095 Montpellier, France
[2] Natl Cartog Ctr, Tehran, Iran
关键词
Landslide; GPS; DInSAR; Surface displacement; Rainfall; Kahrod; Alborz; Iran;
D O I
10.1016/j.enggeo.2008.02.013
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
In this study, we quantify and analyze the spatial and temporal evolution of the surface displacement of Kahrod landslide located in the center of Alborz range (Iran) within the Haraz valley. This landslide represents a threat for this main drainage axis and its numerous infrastructures. We present three sets of displacement vectors based on GPS technique. An 8-benchmark network has been surveyed four times on a 1-year period basis. It provides accurate information on the rate of displacement within the landslide, and addresses the problem of the mechanical resistance of a small hillock, down slope, under the stress imposed by the landslide. Then. this network is densified (57 marks) and measured twice in 6 months using a rapidstatic approach. This yields to a dense description of surface deformation over the whole landslide. Finally, a 1-year time series of permanent GPS recordings is presented and compared to rainfall. Furthermore, we analyze Envisat radar differential interferograms (DInSAR) spanning the same period as permanent GPS. These geodetic data allow to precisely determine the limits of the current sliding zone and to describe the spatial and temporal evolution of surface displacement. The combination of geodesy and field observations leads to a precise description of the past and present kinematics behavior of Kahrod landslide. The chaotic nature of the sliding mass suggests a first catastrophic landslide in a first episode. During the period of observation, the landslide appears to deform quite steadily, and the evidence of short-term correlation between rainfall and deformation amplitude needs to be confirmed by future measurements. Carrying on the acquisition of GPS and InSAR data within the sliding mass but also within adjacent bedrock should give fundamental information with regards to major activation processes (river sapping, water seeping, earthquakes, or failure within the frontal hill of bedrock) and their potential consequences. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:131 / 141
页数:11
相关论文
共 47 条
[1]   Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran [J].
Allen, MB ;
Ghassemi, MR ;
Shahrabi, M ;
Qorashi, M .
JOURNAL OF STRUCTURAL GEOLOGY, 2003, 25 (05) :659-672
[2]  
Ambraseys N.N., 1982, HIST PERSIAN EARTHQU
[3]   A critical review of landslide monitoring experiences [J].
Angeli, MG ;
Pasuto, A ;
Silvano, S .
ENGINEERING GEOLOGY, 2000, 55 (03) :133-147
[4]  
[Anonymous], 2002, GLOBK GLOBAL KALMAN
[5]  
ARTURI A, 2003, P FRINGE2003
[6]   Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy) [J].
Berardino, P ;
Costantini, M ;
Franceschetti, G ;
Iodice, A ;
Pietranera, L ;
Rizzo, V .
ENGINEERING GEOLOGY, 2003, 68 (1-2) :31-51
[7]  
Berberian M, 1999, B SEISMOL SOC AM, V89, P120
[8]   Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas [J].
Burbank, DW ;
Leland, J ;
Fielding, E ;
Anderson, RS ;
Brozovic, N ;
Reid, MR ;
Duncan, C .
NATURE, 1996, 379 (6565) :505-510
[9]   Synthetic aperture radar interferometry to measure Earth's surface topography and its deformation [J].
Bürgmann, R ;
Rosen, PA ;
Fielding, EJ .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2000, 28 :169-209
[10]   Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models [J].
Chen, CW ;
Zebker, HA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (08) :1709-1719